scholarly journals Effects of the detailed protein composition of milk on curd yield and composition measured by model micro-cheese curd making of individual milk samples

2019 ◽  
Vol 102 (9) ◽  
pp. 7863-7873 ◽  
Author(s):  
V. Bonfatti ◽  
D. Ribeiro de Freitas ◽  
A. Lugo ◽  
D. Vicario ◽  
P. Carnier
Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1476
Author(s):  
Jian Zhang ◽  
Ai Zhao ◽  
Shiyun Lai ◽  
Qingbin Yuan ◽  
Xiaojiang Jia ◽  
...  

Our knowledge related to human milk proteins is still limited. The present study determined the changes in multiple human milk proteins during the first six months of lactation, investigated the influencing factors of milk proteins, and explored the impact of milk proteins on infant growth. A total of 105 lactating women and their full-term infants from China were prospectively surveyed in this research. Milk samples were collected at 1–5 days, 8–14 days, 1 month, and 6 months postpartum. Concentrations of total protein and α-lactalbumin were measured in all milk samples, and concentrations of lactoferrin, osteopontin, total casein, β-casein, αs−1 casein, and κ-casein were measured in milk from 51 individuals using ultra performance liquid chromatography coupled with mass spectrometry. The concentration of measured proteins in the milk decreased during the first six months of postpartum (p-trend < 0.001). Maternal age, mode of delivery, maternal education, and income impacted the longitudinal changes in milk proteins (p-interaction < 0.05). Concentrations of αs−1 casein in milk were inversely associated with the weight-for-age Z-scores of the infants (1 m: r −0.29, p 0.038; 6 m: r −0.33, p 0.020). In conclusion, the concentration of proteins in milk decreased over the first six months postpartum, potentially influenced by maternal demographic and delivery factors. Milk protein composition may influence infant weights.


1997 ◽  
Vol 60 (9) ◽  
pp. 1041-1045 ◽  
Author(s):  
DEMETRIOS K. PAPAGEORGIOU ◽  
MINA BORI ◽  
ANTONIOS MANTIS

Pasteurized whole ewe's milk was inoculated to contain ca. 1.0 × 106 to 2.0 × 106 Listeria monocytogenes Scott A or California (CA). Inoculated milk samples of 200 ml in sterile stomacher bags were frozen at −38°C and stored at −18 or −38°C for 7.5 months. Inoculated milk was also made into Feta cheese curd, according to a standard procedure. After 5 h of drainage, curd samples of 200 g in sterile stomacher bags were frozen at −38°C, and stored at −18 or −38°C for 7.5 months. The pH values of the ewe's milk and Feta cheese curd before freezing were 6.70 and 5.43 respectively. At l5-day intervals samples were thawed at 35°C and tested for numbers of L. monocytogenes cells by surface plating on tryptose agar (TA) and tryptose salt agar (TSA) for ewe's milk samples, or on lithium chlorite phenylethanol moxalactam agar (LPMA) for curd samples. A high percentage (ca. 95%) of L. monocytogenes Scott A cells survived during storage of frozen ewe's milk at −18 or −38°C for 7.5 months. The population of L. monocytogenes CA decreased by ca. 50 and 40% during storage of frozen ewe's milk for 7.5 months at −18 and −38°C respectively. The death rate of L. monocytogenes increased after repeated freeze-thaw cycles of ewe's milk at −18 or −38°C. Populations of L. monocytogenes Scott A decreased by ca. 40% in the center of the cheese curd samples but the rate of death was less than ca. 17% on the surface of the frozen cheese curd samples during storage at −38°C for 7.5 months. Populations of strain Scott A decreased by ca. 57% in the center of the cheese curd samples and by ca. 22% on the surface of the frozen cheese curd samples during storage at −18°C for 7.5 months. Populations of L. monocytogenes CA decreased by ca. 98% for samples both at the center and the surface of the frozen curd during storage at −38 or −18°C for 7.5 months.


2009 ◽  
Vol 77 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Elin Hallén ◽  
Anne Lundén ◽  
Toomas Allmere ◽  
Anders Andrén

Impact of milk protein composition on casein (CN) retention in curd during the milk coagulation process was studied using a model cheese making system. Individual milk samples from 110 cows in mid lactation of the Swedish Red and Swedish Holstein breeds with known genotypes of β-casein, κ-casein and β-lactoglobulin were defatted, coagulated with chymosin, subjected to syneresis and subsequent pressing simulated by centrifugation. The results indicated that κ-casein concentration of milk plays an important role in the curd formation process and initial syneresis (whey after cutting), whereas an increased CN ratio was associated with less casein in whey after simulated pressing. Increased κ-casein concentration of milk also characterized the milk samples with no measurable loss of casein in whey, compared with milk samples with casein lost in whey, both after cutting and after simulated pressing. Concentrations of αs1-casein, β-casein, and total casein in milk were positively associated with fresh curd yield, which showed a strong correlation with amount of casein retained in curd. No effect of protein genotype on fresh curd yield or casein in whey was found. The β-lactoglobulin BB genotype was associated with increased casein retention in curd, most likely due to the association of this genotype with CN ratio.


2010 ◽  
Vol 77 (4) ◽  
pp. 398-403 ◽  
Author(s):  
Elin Hallén ◽  
Anne Lundén ◽  
Anna-Maria Tyrisevä ◽  
Maria Westerlind ◽  
Anders Andrén

Ninety-nine individual milk samples from 37 cows in lactation week 10–35, selected for producing well or poorly/non-coagulating milk, were compared regarding protein composition, total calcium content, casein micelle size, pH, and coagulating properties after addition of 0·05% CaCl2. The results showed that a low κ-casein concentration in milk was a risk factor for non-coagulation. CaCl2 addition improved coagulating properties (coagulation time, curd firmness) of nearly all samples and eliminated differences between poorly/non-coagulating and well-coagulating milk, particularly regarding curd firmness. A second, independent data set with 18 non-coagulating or well-coagulating milk samples were analysed for protein composition, where indications of a similar association with κ-casein was observed.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 576
Author(s):  
Maryna Lazouskaya ◽  
Irina Stulova ◽  
Aavo Sõrmus ◽  
Ott Scheler ◽  
Kalle Tiisma ◽  
...  

The yield of product (cheese) during the cheese-making process depends on the cutting time of the cheese curd. However, the determination of optimal cutting time on an industrial scale is difficult as current standard methods are destructive or analyse only small volumes and not the entire milk to be curdled into cheese. This paper presents a novel front-face fluorimeter (FFF) that is designed to be immersed into a milk batch to enable the determination of the cutting time of cheese curd without the destruction of the sample. The FFF sensor signal corresponds to physical changes in milk during cheese formation and has high predictive power (r > 0.85) and good accuracy (RSE = 30%, considering daily variation between milk samples). The performance of the presented fluorimeter was on par with standard rheological and Berridge methods.


1997 ◽  
Vol 6 (4) ◽  
pp. 283-294 ◽  
Author(s):  
Tiina Ikonen ◽  
Matti Ojala ◽  
Eeva-Liisa Syväoja

The effects of κ-β-casein genotypes and β-lactoglobulin genotypes on the renneting properties and composition of milk were estimated for 174 and 155 milk samples of 59 Finnish Ayrshire and 55 Finnish Friesian cows, respectively. As well as the random additive genetic and permanent environmental effects of a cow, the model included the fixed effects for parity, lactation stage, season, κ-β-casein genotypes and κ-lactoglobulin genotypes. Favourable renneting properties were associated with κ-β-casein genotypes ABA1A2, ABA1A1 and AAA1A2 in the Finnish Ayrshire, and with ABA2B, AAA1A3, AAA2A3, ABA1A2 and ABA2A2 in the Finnish Friesian. The favourable effect of these genotypes on curd firming time and on firmness of the curd was partly due to their association with a high κ-casein concentration in the milk. The effect of the κ-casein E allele on renneting properties was unfavourable compared with that of the κ-casein B allele, and possibly with that of the A allele. The β-lactoglobulin genotypes had no effect on renneting properties but they had a clear effect on the protein composition of milk. The β-lactoglobulin AA genotype was associated with a high whey protein % and β-lactoglobulin concentration and the BB genotype with a high casein % and casein number.


2004 ◽  
Vol 71 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Martin J Auldist ◽  
Keith A Johnston ◽  
Nicola J White ◽  
W Paul Fitzsimons ◽  
Michael J Boland

Twenty-nine multiparous cows of each of the Jersey and Friesian breeds, all κ-casein AB phenotype, were grazed together and managed identically. On three occasions during 10 d in spring (early lactation), milk was collected from all cows at four consecutive milkings and bulked according to breed. On a separate occasion, milk samples were also collected from each cow at consecutive a.m. and p.m. milkings to form one daily sample per cow. The bulked milks (800–1000 l per breed on each occasion) were standardized to a protein[ratio ]fat (P[ratio ]F) ratio of 0·80, and 350 l from each breed was made into Cheddar cheese. The solids content of the remaining Friesian milk was then increased by ultrafiltration to a solids concentration equal to that of the Jersey milk. This solids-standardized Friesian milk and a replicate batch of P[ratio ]F standardized Jersey milk were made into two further batches of Cheddar cheese in 350-l vats. Compared with Friesian milk, Jersey milk had higher concentrations of most milk components measured, including protein, casein and fat. There were few difference in milk protein composition between breeds, but there were differences in fat composition. Friesian milk fat had more conjugated linoleic acid (CLA) than Jersey milk fat. Jersey milk coagulated faster and formed firmer curd than Friesian milk. Concentrations of some milk components were correlated with coagulation parameters, but relationships did not allow prediction of cheesemaking potential. Jersey milk yielded 10% more cheese per kg than Friesian milk using P[ratio ]F standardized milk, but for milks with the same solids concentration there were no differences in cheese yield. No differences in cheese composition between breeds were detected. Differences in cheesemaking properties of milk from Jerseys and Friesians were entirely related to the concentrations of solids in the original milk.


2020 ◽  
Vol 23 (1) ◽  
pp. 13-21
Author(s):  
Rodica Ştefania Pelmuş ◽  
Cristina Lazăr ◽  
M. L. Palade ◽  
Mariana Stancu ◽  
C. M. Rotar ◽  
...  

AbstractThe aim of this study was to determine milk quality indices as well as the milk protein composition in Romanian Holstein cattle raised under the conditions of experimental farm of INCDBNA-IBNA. The study was carried out on 22 milk samples. The types of different milk proteins were identified by SDS-PAGE technique. Sampling day and milk chemical composition were performed during the milking period of studied cattle. The quality indices were breed-specific for protein (3.38%) and higher for fat (4.39%).Milk proteins analysis of Romanian Holstein cattle separated by SDS-PAGE electrophoresis showed the presence of four major caseins (αs1-, αs2-, β- and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin). The caseins accounted 77.28% of the total milk proteins, while the major proteins (β-lactoglobulin, α-lactalbumin) from the whey represented 22.72% of the total proteins. αs1-casein + αs2-casein had a higher expression (36.01%) followed by β-casein (31.45%), β-lactoglobulin (18.16%), k-casein (9.82%) and α-lactalbumin (4.56%). The most of milk samples was characterized by a medium expression level of both caseins and whey proteins


1969 ◽  
Vol 21 (03) ◽  
pp. 409-418 ◽  
Author(s):  
S Łopaciuk ◽  
N. O Solum

Summary1. The protein composition of bovine platelet extracts has been investigated by immunoelectrophoresis and polyacrylamide disc electrophoresis. The information obtained is discussed as a basis for study on platelet fibrinogen.2. With antiserum to platelet proteins 11 precipitin lines were observed 3 of which corresponded electrophoretically to plasma albumin, fibrinogen and γ-globulin. These lines were not seen using the same antiserum absorbed with bovine plasma. The 8 additional lines were still present indicating that they represented specific platelet components. Antiserum to plasma produced the 3 above-mentioned lines, but no others.3. With antiserum to purified bovine plasma fibrinogen 3 precipitin lines were observed. The fibrinogen line was the dominant one. The 2 additional lines did not disappear by absorption of the antiserum with bovine serum nor by incubation of the extracts with thrombin. The latter treatment totally removed the fibrinogen line.4. A non-fibrinogen precipitin line, observed only with the antiserum to platelet extract and positioned in the β2-globulin region, disappeared by the incubation of platelet extracts with thrombin.


1981 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Won Young Choi ◽  
Young Kwan Jin ◽  
Ok Ran Lee ◽  
Woon Gyu Kim

Sign in / Sign up

Export Citation Format

Share Document