Neuronavigation and fluoroscopy-assisted subdural strip electrode positioning: a simple method to increase intraoperative accuracy of strip localization in epilepsy surgery

2009 ◽  
Vol 110 (2) ◽  
pp. 327-331 ◽  
Author(s):  
Loránd Erõss ◽  
Attila G. Bagó ◽  
László Entz ◽  
Dániel Fabó ◽  
Péter Halász ◽  
...  

For localization of the epileptogenic zone in cases of focal epilepsy, detailed clinical investigations, imaging studies, and electrophysiological methods are used. If the noninvasive presurgical evaluation provides insufficient data, intracranial electrodes are necessary. Computed tomography and MR imaging techniques are the gold standard for localization of the postoperative position of the implanted intracranial electrode contacts. If the electrode strips are inserted through a bur hole, however, the exact localization of the electrode contacts on the patient's brain remains uncertain for the surgeon during insertion. Therefore, the authors developed a simple method to visualize the electrodes during the procedure. In this method they combine neuronavigation and intraoperative fluoroscopy for parallel visualization of the cortex, electrodes, and the navigation probe. The target region is searched with neuronavigation, a bur hole is made over the optimal entry point, and using real-time fluoroscopy the strip electrode is slid to the tip of the navigation probe, which was kept over the area of interest. At the authors' institution 26 strips in 8 patients have been inserted with this technique, and none of the strips had to be repositioned. There were no complications with this procedure and the prolongation of surgery time is acceptable. Compared to previously published electrode placement methods, this one enhances the accuracy of electrode placement at occipital, parietal, frontal, or interhemispheric regions as well. Intraoperative visualization of the electrodes with fluoroscopy combined with neuronavigation during positioning through a bur hole gives the neurosurgeon the ability to control the real position of the electrode over the gyri during the procedure.

Neurosurgery ◽  
2010 ◽  
Vol 66 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Saadat Shariff ◽  
Fabien Lafaille ◽  
Douglas Labar ◽  
Cynthia Harden ◽  
...  

Abstract OBJECTIVE Medically refractory epilepsy is amenable to neurosurgical intervention if the epileptogenic focus is accurately localized. If the scalp video-electroencephalography (EEG) and magnetic resonance imaging are nonlateralizing, yet a single focus is suspected, video-EEG monitoring with bilateral intracranial electrode placement is helpful to lateralize the ictal onset zone. We describe the indications, risks, and utility of such bilateral surveys at our institution. METHODS We retrospectively reviewed 26 patients with medically refractory seizures who were treated over a 5-year period and underwent bilateral placement of intracranial electrodes. Subdural strips were used in all cases, and additional stereotactic implantation of depth electrodes into mesial temporal lobes occurred in 50%. The mean patient age was 37.7 years, and 65.4% of patients were male. RESULTS The most common indication for bilateral invasive monitoring was bilateral ictal onsets on surface video-EEG (76.9%), followed by frequent interictal spikes contralateral to a single ictal focus (7.7%). Intracranial monitoring lasted an average of 8.2 days, with ictal events recorded in all cases. Ten patients (38.5%) subsequently underwent more extensive unilateral monitoring via implantation of subdural and depth electrodes through a craniotomy. A therapeutic procedure was performed in 17 patients (65.4%), whereas 1 patient underwent a palliative corpus callosotomy (3.8%). Nine patients underwent a resection without unilateral invasive mapping. Reasons for no therapeutic surgery (n = 8) included multifocal onsets, failing the Wada test, refusal of further treatment, and negative intraoperative electrocorticogram. There was 1 surgical complication, involving a retained electrode fragment that was removed in a separate minor procedure. Of the 26 patients, 15 (57.7%) are now seizure-free or have seizure disorders that have substantially improved (modified Engel classes I and II). Of the 17 patients who underwent a potentially curative surgery, 13 (76.5%) were Engel classes I and II. CONCLUSION Bilateral placement of subdural strip and depth electrodes for epilepsy monitoring in patients with nonlateralizing scalp EEG and/or discordant imaging studies but clinical suspicion for focal seizure origin is both safe and effective. Given the safety and efficacy of this procedure, epileptologists should have a low threshold to consider bilateral implants for suitable patients.


2019 ◽  
Vol 130 (2) ◽  
pp. 601-610 ◽  
Author(s):  
Vejay N. Vakharia ◽  
Rachel Sparks ◽  
Roman Rodionov ◽  
Sjoerd B. Vos ◽  
Christian Dorfer ◽  
...  

OBJECTIVEOne-third of cases of focal epilepsy are drug refractory, and surgery might provide a cure. Seizure-free outcome after surgery depends on the correct identification and resection of the epileptogenic zone. In patients with no visible abnormality on MRI, or in cases in which presurgical evaluation yields discordant data, invasive stereoelectroencephalography (SEEG) recordings might be necessary. SEEG is a procedure in which multiple electrodes are placed stereotactically in key targets within the brain to record interictal and ictal electrophysiological activity. Correlating this activity with seizure semiology enables identification of the seizure-onset zone and key structures within the ictal network. The main risk related to electrode placement is hemorrhage, which occurs in 1% of patients who undergo the procedure. Planning safe electrode placement for SEEG requires meticulous adherence to the following: 1) maximize the distance from cerebral vasculature, 2) avoid crossing sulcal pial boundaries (sulci), 3) maximize gray matter sampling, 4) minimize electrode length, 5) drill at an angle orthogonal to the skull, and 6) avoid critical neurological structures. The authors provide a validation of surgical strategizing and planning with EpiNav, a multimodal platform that enables automated computer-assisted planning (CAP) for electrode placement with user-defined regions of interest.METHODSThirteen consecutive patients who underwent implantation of a total 116 electrodes over a 15-month period were studied retrospectively. Models of the cortex, gray matter, and sulci were generated from patient-specific whole-brain parcellation, and vascular segmentation was performed on the basis of preoperative MR venography. Then, the multidisciplinary implantation strategy and precise trajectory planning were reconstructed using CAP and compared with the implemented manually determined plans. Paired results for safety metric comparisons were available for 104 electrodes. External validity of the suitability and safety of electrode entry points, trajectories, and target-point feasibility was sought from 5 independent, blinded experts from outside institutions.RESULTSCAP-generated electrode trajectories resulted in a statistically significant improvement in electrode length, drilling angle, gray matter–sampling ratio, minimum distance from segmented vasculature, and risk (p < 0.05). The blinded external raters had various opinions of trajectory feasibility that were not statistically significant, and they considered a mean of 69.4% of manually determined trajectories and 62.2% of CAP-generated trajectories feasible; 19.4% of the CAP-generated electrode-placement plans were deemed feasible when the manually determined plans were not, whereas 26.5% of the manually determined electrode-placement plans were rated feasible when CAP-determined plans were not (no significant difference).CONCLUSIONSCAP generates clinically feasible electrode-placement plans and results in statistically improved safety metrics. CAP is a useful tool for automating the placement of electrodes for SEEG; however, it requires the operating surgeon to review the results before implantation, because only 62% of electrode-placement plans were rated feasible, compared with 69% of the manually determined placement plans, mainly because of proximity of the electrodes to unsegmented vasculature. Improved vascular segmentation and sulcal modeling could lead to further improvements in the feasibility of CAP-generated trajectories.


2021 ◽  
Author(s):  
Hiroaki Hashimoto ◽  
Hui Ming Khoo ◽  
Takufumi Yanagisawa ◽  
Naoki Tani ◽  
Satoru Oshino ◽  
...  

Objective: To clarify variations in the relationship between high-frequency activities (HFAs) and low frequency bands from the tonic to the clonic phase in focal to bilateral tonic-clonic seizures (FBTCS), using phase-amplitude coupling. Methods: This retrospective study enrolled six patients with drug-resistant focal epilepsy who underwent intracranial electrode placement for presurgical invasive electroencephalography at Osaka University Hospital (July 2018–July 2019). We used intracranial electrodes to record seizures in focal epilepsy (11 FBTCS). The magnitude of synchronization index (SIm) and receiver operating characteristic (ROC) analysis were used to analyze the coupling between HFA amplitude (80–250 Hz) and lower frequencies phase. Results: The θ (4–8 Hz)-HFA SIm peaked in the tonic phase, whereas the δ (2–4 Hz)-HFA SIm peaked in the clonic phase. ROC analysis indicated that the δ-HFA SIm discriminated well the clonic from the tonic phase. Conclusions: The main low–frequency band modulating the HFA shifted from the θ band in the tonic phase to the δ band in the clonic phase. Significance: In FBTCS, low-frequency band coupling with HFA amplitude varies temporally. Especially, the δ band is specific to the clonic phase. These results suggest dynamically neurophysiological changes in the thalamus or basal ganglia throughout FBTCS.


Author(s):  
Hiroaki Hashimoto ◽  
Hui Ming Khoo ◽  
Takufumi Yanagisawa ◽  
Naoki Tani ◽  
Satoru Oshino ◽  
...  

AbstractObjectiveHigh-frequency activities (HFAs) and phase-amplitude coupling (PAC) are gaining attention as key neurophysiological biomarkers for studying human epilepsy. We aimed to clarify and visualize how HFAs are modulated by the phase of low-frequency bands during seizures.MethodsWe used intracranial electrodes to record seizures of symptomatic focal epilepsy (15 seizures in seven patients). Ripples (80–250 Hz), as representative of HFAs, were evaluated along with PAC. The synchronization index (SI), representing PAC, was used to analyze the coupling between the amplitude of ripples and the phase of lower frequencies. We created a video in which the intracranial electrode contacts were represented by circles that were scaled linearly to the power changes of ripple.ResultsThe main low frequency band modulating ictal-ripple activities was the θ band (4–8 Hz), and after completion of ictal-ripple burst, δ (1–4 Hz)-ripple PAC occurred. The video showed that fluctuation of the diameter of these circles indicated the rhythmic changes during significant high values of θ-ripple PAC.ConclusionsWe inferred that ripple activities occurring during seizure evolution were modulated by θ rhythm. In addition, we concluded that rhythmic circles’ fluctuation presented in the video represents the PAC phenomenon. Our video is thus a useful tool for understanding how ripple activity is modulated by the low-frequency phase in relation with PAC.


2019 ◽  
Vol 80 (05) ◽  
pp. 353-358 ◽  
Author(s):  
Peter C. Reinacher ◽  
Dirk-Matthias Altenmüller ◽  
Marie T. Krüger ◽  
Andreas Schulze-Bonhage ◽  
Horst Urbach ◽  
...  

Background and Study Aims In complex cases of drug-resistant focal epilepsy, the precise localization of the epileptogenic zone requires simultaneous implantation of depth and subdural grid electrodes. This study describes a new simple frame-assisted method that facilitates the simultaneous placement of both types of intracranial electrodes. Material and Methods Ten consecutive patients were evaluated and divided into two groups. Group A included patients with simultaneous frame-assisted placement of depth and subdural grid electrodes. In group B, depth electrodes were implanted stereotactically; grid electrodes were implanted in a separate surgery. Results The placement of the subdural grid was accurate as individually designed by the epileptologists in all five patients from group A. In group B, one patient showed a slight and another one a significant deviation of the subdural grid position postoperatively. The mean surgical time in group A was shorter (280±62 minutes) compared with the mean duration of the surgical procedures in group B (336±51 minutes). Conclusion The frame-assisted placement of subdural grid electrodes facilitates the surgical procedure for invasive video-electroencephalography monitoring in complex cases of drug-resistant focal epilepsy in which a combination of depth electrodes and subdural grid electrodes is needed, by reducing the surgical time and guaranteeing highly accurate electrode localizations.


2012 ◽  
Vol 9 (3) ◽  
pp. 290-300 ◽  
Author(s):  
Massimo Cossu ◽  
Marco Schiariti ◽  
Stefano Francione ◽  
Dalila Fuschillo ◽  
Francesca Gozzo ◽  
...  

Object The authors report on the use of stereoelectroencephalography (stereo-EEG) in the presurgical electroclinical evaluation of infants and very young children with focal drug-resistant epilepsy. Methods Fifteen patients (9 girls and 6 boys, mean age 34.1 ± 7.3 months, range 21–45 months), potentially candidates to receive surgical treatment for their focal drug-resistant epilepsy, were evaluated using stereo-EEG recording for a detailed definition of the epileptogenic zone. Stereoelectroencephalography was indicated because neuroradiological (brain MRI) and video-EEG data failed to adequately localize the epileptogenic zone. Stereotactic placement of multicontact intracerebral electrodes was preceded by the acquisition of all pertinent anatomical information from structural and functional MRI and from brain angiography, enabling the accurate targeting of desired structures through avascular trajectories. Stereoelectroencephalography monitoring attempted to record habitual seizures; electrical stimulations were performed to induce seizures and for the functional mapping of eloquent areas. Stereoelectroencephalography-guided microsurgery, when indicated, pointed to removal of the epileptogenic zone and seizure control. Results Brain MRI revealed an anatomical lesion in 13 patients (lobar in 2 cases, multilobar or hemispheric in 11 cases) and was unremarkable in 2 patients. One patient underwent 2 stereo-EEG studies. The arrangement of the intracerebral electrodes was unilateral in all but 1 case. One patient died the day following electrode placement due to massive brain edema and profound hyponatremia of undetermined cause. In 8 cases intracerebral electrical stimulations allowed mapping of functionally critical areas; in 3 other cases that received purposeful placement of electrodes in presumably eloquent areas, no functional response was obtained. Of the 14 patients who completed stereo-EEG monitoring, 1 was excluded from surgery for multifocality of seizures and 13 underwent operations. Postoperatively, 2 patients exhibited an anticipated, permanent motor deficit, 3 experienced a transient motor deficit, and 2 experienced transient worsening of a preexisting motor deficit. Three patients developed a permanent homonymous hemianopia after posterior resections. Histological analysis revealed cortical malformations in 10 cases. Of the 10 patients with a postoperative follow-up of at least 12 months, 6 (60%) were seizure-free (Engel Class Ia), 2 (20%) experienced a significant reduction of seizures (Engel Class II), and 2 (20%) were unchanged (Engel Class IV). Conclusions The present study indicates that stereo-EEG plays a prominent role in the presurgical evaluation of focal epilepsies also in the first years of life and that it may offer a surgical option in particularly complex cases that would have scarcely benefitted from further medical treatment. Results of stereo-EEG–guided resective surgery were excellent, with 80% of patients exhibiting a substantial improvement in seizures. In consideration of the potentially life-threatening risks of major intracranial surgery in this specific age group, the authors recommend reserving stereo-EEG evaluations for infants with realistic chances of benefiting from surgery.


2019 ◽  
Vol 24 (3) ◽  
pp. 284-292
Author(s):  
Eisha A. Christian ◽  
Elysa Widjaja ◽  
Ayako Ochi ◽  
Hiroshi Otsubo ◽  
Stephanie Holowka ◽  
...  

OBJECTIVESmall lesions at the depth of the sulcus, such as with bottom-of-sulcus focal cortical dysplasia, are not visible from the surface of the brain and can therefore be technically challenging to resect. In this technical note, the authors describe their method of using depth electrodes as landmarks for the subsequent resection of these exacting lesions.METHODSA retrospective review was performed on pediatric patients who had undergone invasive electroencephalography with depth electrodes that were subsequently used as guides for resection in the period between July 2015 and June 2017.RESULTSTen patients (3–15 years old) met the criteria for this study. At the same time as invasive subdural grid and/or strip insertion, between 2 and 4 depth electrodes were placed using a hand-held frameless neuronavigation technique. Of the total 28 depth electrodes inserted, all were found within the targeted locations on postoperative imaging. There was 1 patient in whom an asymptomatic subarachnoid hemorrhage was demonstrated on postprocedural imaging. Depth electrodes aided in target identification in all 10 cases.CONCLUSIONSDepth electrodes placed at the time of invasive intracranial electrode implantation can be used to help localize, target, and resect primary zones of epileptogenesis caused by bottom-of-sulcus lesions.


2021 ◽  
Vol 22 (8) ◽  
pp. 3860
Author(s):  
Elisa Ren ◽  
Giulia Curia

Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.


Author(s):  
Jessica Centracchio ◽  
Antonio Sarno ◽  
Daniele Esposito ◽  
Emilio Andreozzi ◽  
Luigi Pavone ◽  
...  

Abstract Purpose People with drug-refractory epilepsy are potential candidates for surgery. In many cases, epileptogenic zone localization requires intracranial investigations, e.g., via ElectroCorticoGraphy (ECoG), which uses subdural electrodes to map eloquent areas of large cortical regions. Precise electrodes localization on cortical surface is mandatory to delineate the seizure onset zone. Simple thresholding operations performed on patients’ computed tomography (CT) volumes recognize electrodes but also other metal objects (e.g., wires, stitches), which need to be manually removed. A new automated method based on shape analysis is proposed, which provides substantially improved performances in ECoG electrodes recognition. Methods The proposed method was retrospectively tested on 24 CT volumes of subjects with drug-refractory focal epilepsy, presenting a large number (> 1700) of round platinum electrodes. After CT volume thresholding, six geometric features of voxel clusters (volume, symmetry axes lengths, circularity and cylinder similarity) were used to recognize the actual electrodes among all metal objects via a Gaussian support vector machine (G-SVM). The proposed method was further tested on seven CT volumes from a public repository. Simultaneous recognition of depth and ECoG electrodes was also investigated on three additional CT volumes, containing penetrating depth electrodes. Results The G-SVM provided a 99.74% mean classification accuracy across all 24 single-patient datasets, as well as on the combined dataset. High accuracies were obtained also on the CT volumes from public repository (98.27% across all patients, 99.68% on combined dataset). An overall accuracy of 99.34% was achieved for the recognition of depth and ECoG electrodes. Conclusions The proposed method accomplishes automated ECoG electrodes localization with unprecedented accuracy and can be easily implemented into existing software for preoperative analysis process. The preliminary yet surprisingly good results achieved for the simultaneous depth and ECoG electrodes recognition are encouraging. Ethical approval n°NCT04479410 by “IRCCS Neuromed” (Pozzilli, Italy), 30th July 2020.


2020 ◽  
Vol 36 (S1) ◽  
pp. 38-38
Author(s):  
Andrey Avdeyev ◽  
Azat Shpekov ◽  
Valeriy Benberin ◽  
Nasrulla Shanazarov ◽  
Leilya Ismailova ◽  
...  

IntroductionWorldwide, more than 50 million people suffer from epilepsy, and there are 16–51 new cases per 100,000 population each year. Up to 30 percent of patients with epilepsy are pharmacoresistant, who are candidates for surgical treatment. Invasive electroencephalography (iEEG) is a mandatory method in the arsenal of epileptic centers, and is gradually becoming the gold standard for invasive determination of boundaries between the affected and functional zones of the cortex and subcortical brain. Treatment costs correlate with the severity of the disease, with patients having uncontrolled seizures incurring eight times the costs compared to those with controlled epilepsy.MethodsTo assess the clinical and cost-effectiveness of the iEEG in the pre-surgical diagnosis of pharmacoresistant epilepsy, a systematic search of literature by keywords in the MEDLINE database was conducted. The search resulted in sixty-six articles. The analysis included twenty studies that met the search criteria.ResultsMost studies including meta-analysis show very low rates of complications of iEEG. Literature data demonstrate cost-effectiveness of the method in patients with pharmacoresistant epilepsy in comparison with continued antiepileptic drug therapy. As an integrated method, rather than a simple method, it takes maximum account of clinical, neurophysiological and anatomical-functional data to achieve accurate localization of the epileptogenic zone. Currently, iEEG is a clinically effective method to improve the safety and specificity of resective surgery.ConclusionsWith the use of iEEG, mortality and disability of patients with pharmacoresistant epilepsy will be significantly reduced. It has also been proven that epilepsy surgery leads to significant financial savings in the treatment of pharmacoresistant epilepsy. The results of the clinical and economic evaluation (mini-HTA report) have been submitted to the Ministry of Healthcare for decision-making on including iEEG in government reimbursement system.


Sign in / Sign up

Export Citation Format

Share Document