scholarly journals Intraoperative stimulation techniques for functional pathway preservation and glioma resection

2010 ◽  
Vol 28 (2) ◽  
pp. E1 ◽  
Author(s):  
Nader Sanai ◽  
Mitchel S. Berger

Although a primary tenet of neurosurgical oncology is that survival can improve with greater tumor resection, this principle must be tempered by the potential for functional loss following a radical removal. Preoperative planning with functional and physiological imaging paradigms, combined with intraoperative strategies such as cortical and subcortical stimulation mapping, can effectively reduce the risks associated with operating in eloquent territory. In addition to identifying critical motor pathways, these techniques can be adapted to identify language function reliably. The authors review the technical nuances of intraoperative mapping for low- and high-grade gliomas, demonstrating their efficacy in optimizing resection even in patients with negative mapping data. Collectively, these surgical strategies represent the cornerstone for operating on gliomas in and around functional pathways.

1999 ◽  
Vol 91 (6) ◽  
pp. 922-927 ◽  
Author(s):  
Charles D. Yingling ◽  
Steven Ojemann ◽  
Barbara Dodson ◽  
Margaret J. Harrington ◽  
Mitchel S. Berger

Object. The goal of this study was to determine the usefulness of electromyographic (EMG) recording in locating motor pathways near the central sulcus or internal capsule during surgery.Methods. Multichannel EMG recordings were compared with visual observation of contralateral body movement that was elicited by direct cortical or subcortical stimulation used to identify motor pathways before and during tumor resection.The EMG recordings were more sensitive than visual observation alone in identifying motor responses: in 30% of cases, responses were identified by EMG recording alone at some point during the operation and, in 9% of cases, EMG responses were the only responses observed. Additionally, EMG recordings often detected seizure activity resulting from electrical stimulation of the cortex that could not be appreciated on visual inspection. No new motor deficits were seen postoperatively in 88% of the patients in this series.Conclusions. Using EMG recording in addition to motor pathway mapping results in greater sensitivity, allowing the use of lower stimulation levels and facilitating detection of stimulation-induced seizure activity.


2020 ◽  
Vol 132 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
Bryan D. Choi ◽  
Daniel K. Lee ◽  
Jimmy C. Yang ◽  
Caroline M. Ayinon ◽  
Christine K. Lee ◽  
...  

OBJECTIVEIntraoperative seizures during craniotomy with functional mapping is a common complication that impedes optimal tumor resection and results in significant morbidity. The relationship between genetic mutations in gliomas and the incidence of intraoperative seizures has not been well characterized. Here, the authors performed a retrospective study of patients treated at their institution over the last 12 years to determine whether molecular data can be used to predict the incidence of this complication.METHODSThe authors queried their institutional database for patients with brain tumors who underwent resection with intraoperative functional mapping between 2005 and 2017. Basic clinicopathological characteristics, including the status of the following genes, were recorded: IDH1/2, PIK3CA, BRAF, KRAS, AKT1, EGFR, PDGFRA, MET, MGMT, and 1p/19q. Relationships between gene alterations and intraoperative seizures were evaluated using chi-square and two-sample t-test univariate analysis. When considering multiple predictive factors, a logistic multivariate approach was taken.RESULTSOverall, 416 patients met criteria for inclusion; of these patients, 98 (24%) experienced an intraoperative seizure. Patients with a history of preoperative seizure and those treated with antiepileptic drugs prior to surgery were less likely to have intraoperative seizures (history: OR 0.61 [95% CI 0.38–0.96], chi-square = 4.65, p = 0.03; AED load: OR 0.46 [95% CI 0.26–0.80], chi-square = 7.64, p = 0.01). In a univariate analysis of genetic markers, amplification of genes encoding receptor tyrosine kinases (RTKs) was specifically identified as a positive predictor of seizures (OR 5.47 [95% CI 1.22–24.47], chi-square = 5.98, p = 0.01). In multivariate analyses considering RTK status, AED use, and either 2007 WHO tumor grade or modern 2016 WHO tumor groups, the authors found that amplification of the RTK proto-oncogene, MET, was most predictive of intraoperative seizure (p < 0.05).CONCLUSIONSThis study describes a previously unreported association between genetic alterations in RTKs and the occurrence of intraoperative seizures during glioma resection with functional mapping. Future models estimating intraoperative seizure risk may be enhanced by inclusion of genetic criteria.


2009 ◽  
Vol 27 (4) ◽  
pp. E5 ◽  
Author(s):  
Theodoros Kombos ◽  
Olaf Süss ◽  
Peter Vajkoczy

Object The treatment of insular tumors is controversial. Surgical treatment is associated with a higher morbidity rate than other therapies. The present work presents a new method in which the descending motor pathways are monitored during surgery for insular tumors. Methods Intraoperative monitoring was performed in a combination of 2 techniques. The motor cortex was stimulated with a transcranial electrical stimulus. In addition, direct subcortical stimulation was performed with an electrical anodal monopolar stimulus. Compound motor action potentials (CMAPs) were recorded from target muscles. Results Fifteen patients were included in this preliminary study. Following transcranial stimulation, CMAPs were recorded in all cases. Subcortical stimulation was successful in 12 cases. Significant CMAP alterations were recorded in 5 patients. There were no false-negative results in the series. Conclusions The technique presented here is a safe method. It allows a quantitative monitoring of motor function and functional mapping of the pyramidal tract during insular surgery.


2021 ◽  
Vol 7 (5) ◽  
pp. 3266-3275
Author(s):  
Lifeng Huang ◽  
Haiyan Xiang ◽  
Weiming Qian

Previous studies have shown that microsurgery has two main roles in glioma resection, that is, the nerve function is well protected and the degree of tumor resection is improved. On the basis of this experiment, the curative effect of tumor resection under microscope for glioma was studied based on humanized nursing model. By randomly dividing 64 patients into two steps and comparing them in many aspects, the study mainly obtained two inspirations: microglioma resection has good effect, and humanized nursing mode has good effect on postoperative recovery. Finally, some Suggestions and principles for microglioma resection were put forward: the principle of timely operation after diagnosis, the principle of complete resection for nonfunctional areas, the principle of protection for important functional areas, and the principle of recovery plan confirmed by disease examination after surgery. In addition, in terms of the influence of humanized nursing mode on the treatment of glioma under the microscope, the data statistics and SPSS tests show that humanized nursing mode can effectively improve the satisfaction of patients and their families. Relieve anxiety and depression and help patients recover; Lower scores in pain rating statistics, etc. In addition, this experiment has a good basis for development, and all the 64 patients successfully completed the operation without serious complications, which further verified the above conclusions, namely, the maturity and reliability of the technique of microscopic tumor resection for glioma. The technique of tumor resection under microscope can be used in combination with humanized nursing mode, which has good promotion value.


Author(s):  
Henry Colle ◽  
David Colle ◽  
Bonny Noens ◽  
Bob Dhaen ◽  
Giovanni Alessi ◽  
...  

Background During resection of intrinsic brain tumors in eloquent areas, particularly under awake mapping, subcortical stimulation is mandatory to avoid irreversible deficits by damaging white fiber tracts. The current practice is to alternate between subcortical stimulation with an appropriate probe and resection of tumoral tissue with an ultrasound aspiration device. Switching between different devices induces supplementary movement and possible tissue trauma, loss of time, and inaccuracies in the localization of the involved area. Objective To use one device for both stimulation as well as a resecting tool. Methods The tip of different ultrasound aspiration devices is currently used for monopolar current transmission (e.g., for vessel coagulation in liver surgery). We use the same circuitry for monopolar subcortical stimulation when connected with the usual stimulator devices. Results We have applied this method since 2004 in over 500 patients during tumor resection with cortical and subcortical stimulation, mostly with awake language and motor monitoring. Conclusion A method is presented using existing stimulation and wiring devices by which simultaneous subcortical stimulation and ultrasonic aspiration are applied with the same tool. The accuracy, safety, and speed of intrinsic intracranial lesion resection can be improved when subcortical stimulation is applied.


2004 ◽  
Vol 100 (3) ◽  
pp. 369-375 ◽  
Author(s):  
G. Evren Keles ◽  
David A. Lundin ◽  
Kathleen R. Lamborn ◽  
Edward F. Chang ◽  
George Ojemann ◽  
...  

Object. Intraoperative stimulation mapping of subcortical white matter tracts during the resection of gliomas has become a valuable surgical adjunct that is used to reduce morbidity associated with tumor removal. The purpose of this retrospective analysis was to assess the morbidity and functional outcome associated with this method, thus allowing the surgeon to predict the likelihood of causing a temporary or permanent motor deficit. Methods. In this study, the authors report their experience with intraoperative stimulation mapping to locate subcortical motor pathways in 294 patients who underwent surgery for hemispheric gliomas within or adjacent to the rolandic cortex. Data were collected regarding intraoperative cortical and subcortical stimulation mapping results, along with the patient's neurological status pre- and postoperatively. For patients in whom an additional motor deficit occurred postoperatively, its evolution was examined. Of 294 patients, an additional postoperative motor deficit occurred in 60 (20.4%). Of those 60, 23 (38%) recovered to their preoperative baseline status within the 1st postoperative week. Another 12 (20%) recovered from their postoperative motor deficit by the end of the 4th postoperative week, and 11 more recovered to their baseline status by the end of the 3rd postoperative month. Thus, 46 (76.7%) of 60 patients with postoperative motor deficits regained their baseline function within the first 90 days after surgery. The remaining 14 patients (4.8% of the entire study population of 294) had a persistent motor deficit after 3 months. Patients whose subcortical pathways were identified with stimulation mapping were more prone to develop an additional (temporary or permanent) motor deficit than those in whom subcortical pathways could not be identified (27.5% compared with 13.1%, p = 0.003). This was also true when additional (permanent) motor deficits lasted more than 3 months (7.4% when subcortical pathways were found, compared with 2.1% when they were not found; p = 0.041). Conclusions. In patients with gliomas that are located within or adjacent to the rolandic cortex and, thus, the descending motor tracts, stimulation mapping of subcortical pathways enables the surgeon to identify these descending motor pathways during tumor removal and to achieve an acceptable rate of permanent morbidity in these high-risk functional areas.


2019 ◽  
Vol 131 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Seunggu J. Han ◽  
Ramin A. Morshed ◽  
Irene Troncon ◽  
Kesshi M. Jordan ◽  
Roland G. Henry ◽  
...  

OBJECTIVEHerein, the authors report their experience with intraoperative stimulation mapping to locate the descending subcortical motor pathways in patients undergoing surgery for hemispheric gliomas within or adjacent to the rolandic cortex, with particular description of the morbidity and functional outcomes associated with this technique.METHODSThis is a retrospective analysis of patients who, in the period between 1997 and 2016, had undergone resection of hemispheric perirolandic gliomas within or adjacent to descending motor pathways. Data regarding intraoperative stimulation mapping and patient postoperative neurological status were collected.RESULTSOf 702 patients, stimulation mapping identified the descending motor pathways in 300 cases (43%). A new or worsened motor deficit was seen postoperatively in 210 cases (30%). Among these 210 cases, there was improvement in motor function to baseline levels by 3 months postoperatively in 161 cases (77%), whereas the deficit remained in 49 cases (23%). The majority (65%) of long-term deficits (persisting beyond 3 months) were mild or moderate (antigravity strength or better). On multivariate analysis, patients in whom the subcortical motor pathways had been identified with stimulation mapping during surgery were more likely to develop an additional and/or worsened motor deficit postoperatively than were those in whom the subcortical pathways had not been found (45% vs 19%, respectively, p < 0.001). This difference remained when considering the likelihood of a long-term deficit (i.e., persisting > 3 months; 12% vs 3.2%, p < 0.001). A higher tumor grade and the presence of a preoperative motor deficit were also associated with higher rates of motor deficits persisting long-term. A region of restricted diffusion adjacent to the resection cavity was seen in 20 patients with long-term deficits (41%) and was more common in cases in which the motor pathways were not identified (69%). Long-term deficits that occur in settings in which the subcortical motor pathways are not identified seem in large part due to ischemic injury to descending tracts.CONCLUSIONSStimulation mapping allows surgeons to identify the descending motor pathways during resection of tumors in perirolandic regions and to attain an acceptable rate of morbidity in these high-risk cases.


2021 ◽  
Vol 12 ◽  
pp. 117
Author(s):  
Ahmed A. Morsy ◽  
Ayman M. Ismail ◽  
Yasser M. Nasr ◽  
Salwa H. Waly ◽  
Esam A. Abdelhameed

Background: Intraoperative mapping techniques maximize safety and efficacy during perirolandic glioma resection but may induce seizures and limit the procedure. We aim to report the incidence and predictors of stimulation-induced seizures during mapping either patient is awake or under general anesthesia (GA). Methods: Retrospective analysis of 64 patients (40 awake and 24 GA) with perirolandic glioma underwent resection using intraoperative mapping techniques between 2014 and 2019. Preoperative data, operative details, postoperative neurological status, and extent of resection (EOR) were analyzed. Predictors of intraoperative seizures were assessed. Results: The mean cortical and subcortical stimulation intensities needed to evoke motor responses were significantly lower in awake cases than in GA patients (4.9 ± 0.42 vs. 8.9 ± 1.2 mA) and (8.3 ± 0.62 vs. 12.1 ± 1.1 mA), respectively (P = 0.01). Incidence of intraoperative seizures was lower but statistically non-significant in awake cases (10% vs. 12.5%) (P = 0.76). Preoperative multiple antiepileptic drugs (AEDs) (P = 0.03) and low-grade glioma (P = 0.04) were statistically significant predictors for intraoperative seizures. Mean EOR in awake cases was 92.03% and 90.05% in GA cases (P = 0.23). Postoperative deficits were permanent after 3 months only in 5% of awake patients versus 8.3% of GA group (P = 0.59). Conclusion: Awake craniotomy with intraoperative mapping can be done safely for perirolandic gliomas with lower but statistically nonsignificant incidence of intraoperative seizures and this could be attributed to statistically significant lower stimulation intensities required for mapping. Preoperative multiple AEDs and low-grade glioma are significant predictors for intraoperative seizures.


2020 ◽  
Vol 48 (2) ◽  
pp. E11 ◽  
Author(s):  
Brittany M. Stopa ◽  
Joeky T. Senders ◽  
Marike L. D. Broekman ◽  
Mark Vangel ◽  
Alexandra J. Golby

OBJECTIVEFunctional MRI (fMRI) is increasingly being investigated for use in neurosurgical patient care. In the current study, the authors characterize the clinical use of fMRI by surveying neurosurgeons’ use of and attitudes toward fMRI as a surgical planning tool in neurooncology patients.METHODSA survey was developed to inquire about clinicians’ use of and experiences with preoperative fMRI in the neurooncology patient population, including example case images. The survey was distributed to all neurosurgical departments with a residency program in the US.RESULTSAfter excluding incomplete surveys and responders that do not use fMRI (n = 11), 50 complete responses were included in the final analysis. Responders were predominantly from academic programs (88%), with 20 years or more in practice (40%), with a main area of practice in neurooncology (48%) and treating an adult population (90%). All 50 responders currently use fMRI in neurooncology patients, mostly for low- (94%) and high-grade glioma (82%). The leading decision factors for ordering fMRI were location of mass in dominant hemisphere, location in a functional area, motor symptoms, and aphasia. Across 10 cases, language fMRI yielded the highest interrater reliability agreement (Fleiss’ kappa 0.437). The most common reasons for ordering fMRI were to identify language laterality, plan extent of resection, and discuss neurological risks with patients. Clinicians reported that fMRI results were not obtained when ordered a median 10% of the time and were suboptimal a median 27% of the time. Of responders, 70% reported that they had ever resected an fMRI-positive functional site, of whom 77% did so because the site was “cleared” by cortical stimulation. Responders reported disagreement between fMRI and awake surgery 30% of the time. Overall, 98% of responders reported that if results of fMRI and intraoperative mapping disagreed, they would rely on intraoperative mapping.CONCLUSIONSAlthough fMRI is increasingly being adopted as a practical preoperative planning tool for brain tumor resection, there remains a substantial degree of discrepancy with regard to its current use and presumed utility. There is a need for further research to evaluate the use of preoperative fMRI in neurooncology patients. As fMRI continues to gain prominence, it will be important for clinicians to collectively share best practices and develop guidelines for the use of fMRI in the preoperative planning phase of brain tumor patients.


Sign in / Sign up

Export Citation Format

Share Document