Effects of clotrimazole on the growth, morphological characteristics, and cisplatin sensitivity of human glioblastoma cells in vitro

1999 ◽  
Vol 90 (5) ◽  
pp. 918-927 ◽  
Author(s):  
M. Humayun Khalid ◽  
Shobu Shibata ◽  
Tsuyoshi Hiura

Object. Clotrimazole, an antimycotic drug, inhibits proliferation of normal and cancer cells by downregulating the movement of intracellular Ca++ and K+. The authors examined the effect of clotrimazole on the growth and sensitivity to cisplatin of two human glioblastoma cell lines—A172, which has the wild-type p53 gene, and T98G, which has the mutant p53 gene in vitro.Methods. The A172 and T98G glioblastoma cells were exposed to clotrimazole and cell growth was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium chloride colorimetric assay. Clotrimazole produced a dose-dependent inhibition of cell proliferation and caused changes in cellular structure toward a well-differentiated form. The growth inhibitory effect of clotrimazole was reversible. Western immunoblot analysis revealed a marked increase in cellular glial fibrillary acidic protein and wild-type p53 and a decrease in c-myc and c-fos oncoproteins in both cell lines treated with clotrimazole. Flow cytometric analysis revealed that clotrimazole-treated cells accumulated in the G0/G1 phase with a marked decrease in cells in the S phase; when clotrimazole was washed out from the culture medium, cells again started to proliferate, with a marked decrease in cells in the G0/G1 phase and an increase in cells in the S phase. The growth inhibitory effect of clotrimazole could not be overcome by exogenous stimulation with either epidermal growth factor or c-myc peptide. A combined treatment with clotrimazole and cisplatin significantly enhanced cell cytotoxicity compared with treatment using either drug alone. A DNA fragmentation assay showed that both clotrimazole and cisplatin induced apoptosis, which was increased in cells treated by both drugs.Conclusions. The present study indicates that clotrimazole inhibits cell proliferation accompanied by morphological changes toward differentiation of glioblastoma cells and that this drug synergistically enhances the antitumor effect of cisplatin by inducing wild-type p53—mediated apoptosis.

1998 ◽  
Vol 88 (3) ◽  
pp. 535-540 ◽  
Author(s):  
Oliver Dorigo ◽  
Sally T. Turla ◽  
Svetlana Lebedeva ◽  
Ruth A. Gjerset

Object. To study the combined potential of wild-type p53 gene transfer and administration of cisplatin for the treatment of glioblastoma multiforme, the authors used the 9L rat glioblastoma cell line, which expresses a mutant p53. Methods. Stable expression of wild-type p53 in 9L cells was achieved by transfection of the cells with a wild-type p53—expressing plasmid (pCEP4p53). The resultant cell line, 9LpCEP4p53, was found to be more sensitive to cisplatin treatment in vitro than control (9LpCEP4) cells. The in vitro growth rates of control cells and wild-type p53—modified cells were similar in the absence of cisplatin. Fischer 344 rats were implanted intracerebrally with 9LpCEP4p53 cells and intraperitoneally administered 4 mg/kg cisplatin weekly for 7 weeks. These animals survived significantly longer than animals that were implanted with 9LpCEP4p53 cells but were given no cisplatin treatment. In contrast, concurrent cisplatin treatment provided no benefit for animals implanted with 9LpCEP4 cells. Tumors that developed in animals that had been implanted with 9LpCEP4p53 cells and treated with cisplatin had lost expression of wild-type p53, indicating a correlation between expression of wild-type p53 and cisplatin sensitivity in vivo. Conclusions. The findings of this study suggest that p53-based gene therapy in combination with cisplatin-based chemotherapy may be superior to single-modality treatment in dealing with glioblastoma multiforme.


2005 ◽  
Vol 102 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Hartmut Vatter ◽  
Michael Zimmermann ◽  
Veronika Tesanovic ◽  
Andreas Raabe ◽  
Lothar Schilling ◽  
...  

Object. The central role of endothelin (ET)—1 in the development of cerebral vasospasm after subarachnoid hemorrhage is indicated by the successful treatment of this vasospasm in several animal models by using selective ETA receptor antagonists. Clazosentan is a selective ETA receptor antagonist that provides for the first time clinical proof that ET-1 is involved in the pathogenesis of cerebral vasospasm. The aim of the present investigation was, therefore, to define the pharmacological properties of clazosentan that affect ETA receptor—mediated contraction in the cerebrovasculature. Methods. Isometric force measurements were performed in rat basilar artery (BA) ring segments with (E+) and without (E−) endothelial function. Concentration effect curves (CECs) were constructed by cumulative application of ET-1 or big ET-1 in the absence or presence of clazosentan (10−9, 10−8, and 10−7 M). The inhibitory potency of clazosentan was determined by the value of the affinity constant (pA2). The CECs for contraction induced by ET-1 and big ET-1 were shifted to the right in the presence of clazosentan in a parallel dose-dependent manner, which indicates competitive antagonism. The pA2 values for ET-1 were 7.8 (E+) and 8.6 (E−) and the corresponding values for big ET-1 were 8.6 (E+) and 8.3 (E−). Conclusions. The present data characterize clazosentan as a potent competitive antagonist of ETA receptor—mediated constriction of the cerebrovasculature by ET-1 and its precursor big ET-1. These functional data may also be used to define an in vitro profile of an ET receptor antagonist with a high probability of clinical efficacy.


2010 ◽  
Vol 16 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Qiang Huang ◽  
Zhibo Xia ◽  
Yongping You ◽  
Peiyu Pu

1992 ◽  
Vol 12 (12) ◽  
pp. 5581-5592 ◽  
Author(s):  
E Shaulian ◽  
A Zauberman ◽  
D Ginsberg ◽  
M Oren

Mutations in the p53 gene are most frequent in cancer. Many p53 mutants possess transforming activity in vitro. In cells transformed by such mutants, the mutant protein is oligomerized with endogenous cell p53. To determine the relevance of oligomerization for transformation, miniproteins containing C-terminal portions of p53 were generated. These miniproteins, although carrying no point mutation, transformed at least as efficiently as full-length mutant p53. Transforming activity was coupled with the ability to oligomerize with wild-type p53, as well as with the ability to abrogate sequence-specific DNA binding by coexpressed wild-type p53. These findings suggest that p53-mediated transformation may operate through a dominant negative mechanism, involving the generation of DNA binding-incompetent oligomers.


Gut ◽  
1999 ◽  
Vol 44 (3) ◽  
pp. 366-371 ◽  
Author(s):  
M Ohashi ◽  
F Kanai ◽  
H Ueno ◽  
T Tanaka ◽  
K Tateishi ◽  
...  

BACKGROUND/AIMSGastric cancer is one of the most prevalent forms of cancer in East Asia. Point mutation of the p53 gene has been reported in more than 60% of cases of gastric cancer and can lead to genetic instability and uncontrolled cell proliferation. The purpose of this investigation was to evaluate the potential of p53 gene therapy for gastric cancer.METHODSThe responses of human gastric cancer cell lines, MKN1, MKN7, MKN28, MKN45, and TMK-1, to recombinant adenoviruses encoding wild type p53 (AdCAp53) were analysed in vitro. The efficacy of the AdCAp53 treatment for MKN1 and MKN45 subcutaneous tumours in nude mice was assessed in vivo.RESULTSp53-specific growth inhibition was observed in vitro in two of four gastric cancer cell lines with mutated p53, but not in the wild type p53 cell line. The mechanism of the killing of gastric cancer cells by AdCAp53 was found, by flow cytometric analysis and detection of DNA fragmentation, to be apoptosis. In vivo studies showed that the growth of subcutaneous tumours of p53 mutant MKN1 cells was significantly inhibited by direct injection of AdCAp53, but no significant growth inhibition was detected in the growth of p53 wild type MKN45 tumours.CONCLUSIONSAdenovirus mediated reintroduction of wild type p53 is a potential clinical utility in gene therapy for gastric cancers.


2006 ◽  
Vol 105 (Supplement) ◽  
pp. 208-213 ◽  
Author(s):  
Desheng Xu ◽  
Qiang Jia ◽  
Yanhe Li ◽  
Chunsheng Kang ◽  
Peiyu Pu

ObjectThe authors sought to study the combined potential of wild-type p53 gene transfer and Gamma Knife surgery (GKS) for the treatment of glioblastomas multiforme. Modification of the radiation response in C6 glioma cells in vitro and in vivo by the wild-type p53 gene was investigated.MethodsStable expression of wild-type p53 in C6 cells was achieved by transduction of the cells with adenoviral p53. Two days later, some cells were treated with GKS. Forty-eight hours after irradiation, the comparative survival rate was assessed by monotetrazolium (MTT) assays. Treated and control C6 glioma cells (4 × 103 per well) were plated into a 96-well plate in octuplicate and tested every 24 hours. Meanwhile, immunohistopathological examination of proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate (TUNEL) assays were performed. The MTT assays indicated the p53, GKS, and combined treated cells proliferated at a significantly lower rate than those of the control group (p < 0.01, Days 2–6) and the positive fraction of PCNA in p53-treated group and GKS-treated group was 70.18 ± 3.61 and 50.71 ± 2.61, respectively, whereas the percentage in the combined group was 30.68 ± 1.49 (p < 0.01).Fifty-six male Sprague–Dawley rats were anesthetized and inoculated with 106 cultured C6 glioma cells into the cerebrum. Forty-eight hours after transduction with adenoviral p53, some rats underwent GKS. A margin dose of 15 Gy was delivered to the 50% isodose line. Two days later, six rats in each group were killed. Their brains were removed and paraffin-embedded section were prepared for immunohistopathological examination and TUNEL assays. The remaining rats were observed for the duration of the survival period. The survival curve indicated that a modest but significant enhancement of survival duration was seen in the p53-treated or GKS alone groups, whereas a more marked and highly significant enhancement of survival duration was achieved when these two treatment modalities were combined. When PCNA expression was downregulated, apoptotic cells become obvious after TUNEL staining.Conclusions The findings of this study suggest that p53-based gene therapy in combination with GKS may be superior to single-modality treatment of C6 glioma.


2015 ◽  
Vol 112 (32) ◽  
pp. 10002-10007 ◽  
Author(s):  
Liang Chen ◽  
Farooq Rashid ◽  
Abdullah Shah ◽  
Hassaan M. Awan ◽  
Mingming Wu ◽  
...  

p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice.


2002 ◽  
Vol 9 (8) ◽  
pp. 708-714 ◽  
Author(s):  
Gilles Dolivet ◽  
Jean-Louis Merlin ◽  
Muriel Barberi-Heyob ◽  
Carole Ramacci ◽  
Patrick Erbacher ◽  
...  

1990 ◽  
Vol 73 (3) ◽  
pp. 436-440 ◽  
Author(s):  
Jun-ichi Kuratsu ◽  
Yukitaka Ushio

✓ Platelet-derived growth factor (PDGF) is produced by glioma cells. However, there is heterogeneity among glioma cell lines in the production of PDGF. It has been demonstrated that U251MG cells produce a PDGF-like molecule while U105MG cells do not. Trapidil, a specific antagonist of PDGF, competes for receptor binding with PDGF. Therefore, the inhibitory effect of trapidil on the proliferation of glioma cells was investigated in vitro using two glioma cell lines. At 100 µg/ml, trapidil significantly inhibited the proliferation of U251MG cells (which produce the PDGF-like molecule). At the same trapidil concentration, the proliferation of U105MG cells (which do not produce the PDGF-like molecule) was not inhibited. The inhibitory effect of trapidil was remarkable on Days 3 and 4 of culture. After 4 days of incubation, the proliferation of U251MG cells was 46% of the control preparation. Trapidil enhanced the antitumor effect of 3-((4-amino-2-methyl-5-pyrimidinyl)ethyl)-1-(2-chloroethyl)-1-nitro-sourea (ACNU) against U251MG cells. The enhancing effect was highest on Days 4 and 6 of culture. After 6 days of incubation in the presence of 100 µg/ml trapidil and 1 µg/ml ACNU, the proliferation of U251MG cells was 18% of the control preparation. These findings suggest that trapidil interrupts the autocrine loop at the PDGF and PDGF-receptor level and that combination therapy with trapidil and ACNU may be useful in the treatment of glioma.


1999 ◽  
Vol 91 (6) ◽  
pp. 997-1004 ◽  
Author(s):  
William C. Broaddus ◽  
Yue Liu ◽  
Laura L. Steele ◽  
George T. Gillies ◽  
Peck-Sun Lin ◽  
...  

Object. The goal of this study was to determine whether adenoviral vector—mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53.The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis.Methods. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase—polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation.The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p < 0.01).Conclusions. The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy, not only in human gliomas that express mutant p53, but also in those that express wild-type p53.


Sign in / Sign up

Export Citation Format

Share Document