Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function

1998 ◽  
Vol 88 (3) ◽  
pp. 535-540 ◽  
Author(s):  
Oliver Dorigo ◽  
Sally T. Turla ◽  
Svetlana Lebedeva ◽  
Ruth A. Gjerset

Object. To study the combined potential of wild-type p53 gene transfer and administration of cisplatin for the treatment of glioblastoma multiforme, the authors used the 9L rat glioblastoma cell line, which expresses a mutant p53. Methods. Stable expression of wild-type p53 in 9L cells was achieved by transfection of the cells with a wild-type p53—expressing plasmid (pCEP4p53). The resultant cell line, 9LpCEP4p53, was found to be more sensitive to cisplatin treatment in vitro than control (9LpCEP4) cells. The in vitro growth rates of control cells and wild-type p53—modified cells were similar in the absence of cisplatin. Fischer 344 rats were implanted intracerebrally with 9LpCEP4p53 cells and intraperitoneally administered 4 mg/kg cisplatin weekly for 7 weeks. These animals survived significantly longer than animals that were implanted with 9LpCEP4p53 cells but were given no cisplatin treatment. In contrast, concurrent cisplatin treatment provided no benefit for animals implanted with 9LpCEP4 cells. Tumors that developed in animals that had been implanted with 9LpCEP4p53 cells and treated with cisplatin had lost expression of wild-type p53, indicating a correlation between expression of wild-type p53 and cisplatin sensitivity in vivo. Conclusions. The findings of this study suggest that p53-based gene therapy in combination with cisplatin-based chemotherapy may be superior to single-modality treatment in dealing with glioblastoma multiforme.

2005 ◽  
Vol 102 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Yushi Ueno ◽  
Masaaki Yamamoto ◽  
Israel Vlodavsky ◽  
Iris Pecker ◽  
Kohichi Ohshima ◽  
...  

Object. The authors investigated the presence of endoglycosidase heparanase in human glioblastoma multiforme (GBM) and metastatic brain tumors as well as in healthy brain tissue to explore the relationship between the biological characteristics of GBM and the role of heparanase. Methods. Heparanase messenger (m)RNA was almost undetectable in GBMs in vivo, whereas it was frequently seen in metastatic brain tumors according to results of reverse transcription—polymerase chain reaction (RT-PCR). Immunohistochemical analysis of paraffin-embedded tissue sections showed that neoplastic cells in metastatic brain tumors, especially in cells that invaded blood vessels, exhibit intense heparanase immunoreactivity. Heparanase was present in two highly invasive glioma cell lines, U87MG and U251MG, in vitro. These cell lines did not have metastatic capability, which was tested in an experimental pulmonary metastases model in mice. The activity of heparanase in these cell lines was almost the same as that in the highly metastatic melanoma cell line B16-F1. After nude mice were inoculated with U87MG cells, however, heparanase was no longer detected in subcutaneous or intracerebral experimental glioma in vivo based on results of immunohistochemical analysis. According to results of real-time quantitative PCR, there was a 10-fold increase in heparanase mRNA in U87MG glioma cells in vitro compared with that in experimental U87MG glioma tissue in vivo in nude mice. Conclusions. These results indicate that the expression of heparanase was downregulated in GBM in vivo, which rarely metastasizes to distant organs outside the central nervous system. Heparanase is not implicated in the invasiveness of GBM to surrounding healthy brain tissue in vivo.


2000 ◽  
Vol 93 (5) ◽  
pp. 863-872 ◽  
Author(s):  
Alison Kraus ◽  
Markus W. Gross ◽  
Ruth Knuechel ◽  
Kristin Münkel ◽  
Frauke Neff ◽  
...  

Object. A clearer understanding of the cellular mechanisms involved in the response to ionizing radiation is pivotal to the development of new therapeutic strategies for glioblastoma multiforme (GBM). To gain insight into dynamic functional aspects of cell cycle regulation and the control of apoptosis in GBMs, the authors investigated the molecular changes induced by ionizing radiation in genetically characterized primary GBMs in vitro compared with secondary GBMs, Grades II and III gliomas, and three GBM cell lines.Methods. Irradiation of primary GBMs bearing wild-type (wt) p53 invariably fails to invoke the G1 checkpoint and apoptosis in vitro. In approximately half of these primary GBMs a defect lies at or above the level of p53 because transcriptional activation of p21 and bax after irradiation does not occur. The failure of a p21 response to irradiation is invariably accompanied by overexpression of p21 mRNA under nonirradiated conditions. In all remaining primary GBMs transcriptional activation of p21 after irradiation does occur, suggesting that a defect downstream from p21 prevents G1 arrest.Conclusions. These results show that the G1 checkpoint and the p53 pathway are dysfunctional in primary GBMs in vitro, despite the presence of an intact p53 gene. The data also suggest that primary GBMs may be divided into two categories on the basis of their p21 response to irradiation.


1999 ◽  
Vol 90 (5) ◽  
pp. 918-927 ◽  
Author(s):  
M. Humayun Khalid ◽  
Shobu Shibata ◽  
Tsuyoshi Hiura

Object. Clotrimazole, an antimycotic drug, inhibits proliferation of normal and cancer cells by downregulating the movement of intracellular Ca++ and K+. The authors examined the effect of clotrimazole on the growth and sensitivity to cisplatin of two human glioblastoma cell lines—A172, which has the wild-type p53 gene, and T98G, which has the mutant p53 gene in vitro.Methods. The A172 and T98G glioblastoma cells were exposed to clotrimazole and cell growth was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium chloride colorimetric assay. Clotrimazole produced a dose-dependent inhibition of cell proliferation and caused changes in cellular structure toward a well-differentiated form. The growth inhibitory effect of clotrimazole was reversible. Western immunoblot analysis revealed a marked increase in cellular glial fibrillary acidic protein and wild-type p53 and a decrease in c-myc and c-fos oncoproteins in both cell lines treated with clotrimazole. Flow cytometric analysis revealed that clotrimazole-treated cells accumulated in the G0/G1 phase with a marked decrease in cells in the S phase; when clotrimazole was washed out from the culture medium, cells again started to proliferate, with a marked decrease in cells in the G0/G1 phase and an increase in cells in the S phase. The growth inhibitory effect of clotrimazole could not be overcome by exogenous stimulation with either epidermal growth factor or c-myc peptide. A combined treatment with clotrimazole and cisplatin significantly enhanced cell cytotoxicity compared with treatment using either drug alone. A DNA fragmentation assay showed that both clotrimazole and cisplatin induced apoptosis, which was increased in cells treated by both drugs.Conclusions. The present study indicates that clotrimazole inhibits cell proliferation accompanied by morphological changes toward differentiation of glioblastoma cells and that this drug synergistically enhances the antitumor effect of cisplatin by inducing wild-type p53—mediated apoptosis.


1995 ◽  
Vol 15 (8) ◽  
pp. 4249-4259 ◽  
Author(s):  
A M Yahanda ◽  
J M Bruner ◽  
L A Donehower ◽  
R S Morrison

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.


2011 ◽  
Vol 80 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Chen Li ◽  
Kurniyati ◽  
Bo Hu ◽  
Jiang Bian ◽  
Jianlan Sun ◽  
...  

ABSTRACTThe oral bacteriumPorphyromonas gingivalisis a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide.P. gingivalisexhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence ofP. gingivalisremain elusive. In this report, we found thatP. gingivalisencodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed thatPG0352is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPgis an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that thePG0352deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type,in vitrostudies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement.In vivostudies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPgis an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity ofP. gingivalis, and it can potentially serve as a new target for developing therapeutic agents againstP. gingivalisinfection.


1994 ◽  
Vol 80 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Yasuhiro Matsuda ◽  
Keiichi Kawamoto ◽  
Katsuzo Kiya ◽  
Kaoru Kurisu ◽  
Kazuhiko Sugiyama ◽  
...  

✓ The presence of the progesterone receptor (PR) in meningioma tissue has been confirmed by previous investigations. Studies have shown that the antiprogesterone drug, mifepristone, is a potent agent that inhibits the growth of cultured meningioma cells and reduces the size of meningiomas in experimental animal models and humans. However, these studies have not fully examined the relationship between the antitumor effects of an antiprogesterone agent and the expression of the PR. The present study examined the antitumor effects of mifepristone and a new potent antiprogesterone agent, onapristone; a correlation between the antitumor effects of these antiprogesterones and the presence of PR's in meningiomas in vitro and in vivo was also investigated. Meningioma tissue surgically removed from 13 patients was used in this study. In the in vitro arm of the study, mifepristone and onapristone exhibited cytostatic and cytocidal effects against cultured meningioma cells, regardless of the presence or absence of PR's; however, three PR-negative meningiomas showed no response to any dose of mifepristone and/or onapristone. In the in vivo arm, meningioma cells, embedded in a collagen gel, were implanted into the renal capsules of nude mice. Antiprogesterone treatment resulted in a marked reduction of the tumor volume regardless of the presence or absence of PR's. No histological changes in the meningioma cells suggestive of necrosis or apoptosis were detected in any of the mice treated with antiprogesterones. These findings suggest that mifepristone and onapristone have an antitumor effect against meningioma cells via the PR's and/or another receptor, such as the glucocorticoid receptor.


1998 ◽  
Vol 89 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Frederick F. Lang ◽  
W. K. Alfred Yung ◽  
Uma Raju ◽  
Floralyn Libunao ◽  
Nicholas H. A. Terry ◽  
...  

Object. The authors sought to determine whether combining p53 gene transfer with radiation therapy would enhance the therapeutic killing of p53 wild-type glioma cells. It has been shown in several reports that adenovirus-mediated delivery of the p53 gene into p53 mutant gliomas results in dramatic apoptosis, but has little effect on gliomas containing wild-type p53 alleles. Therefore, p53 gene therapy alone may not be a clinically effective treatment for gliomas because most gliomas are composed of both p53 mutant and wild-type cell populations. One potential approach to overcome this problem is to exploit the role p53 plays as an important determinant in the cellular response to ionizing radiation. Methods. In vitro experiments were performed using the glioma cell line U87MG, which contains wild-type p53. Comparisons were made to the glioma cell line U251MG, which contains a mutant p53 allele. Monolayer cultures were infected with an adenovirus containing wild-type p53 (Ad5CMV-p53), a control vector (dl312), or Dulbecco's modified Eagle's medium (DMEM). Two days later, cultures were irradiated and colony-forming efficiency was determined. Transfection with p53 had only a minor effect on the plating efficiency of nonirradiated U87MG cells, reducing the plating efficiency from 0.23 ± 0.01 in DMEM to 0.22 ± 0.04 after addition of Ad5CMV-p53. However, p53 transfection significantly enhanced the radiosensitivity of these cells. The dose enhancement factor at a surviving fraction of 0.10 was 1.5, and the surviving fraction at 2 Gy was reduced from 0.61 in untransfected controls to 0.38 in p53-transfected cells. Transfection of the viral vector control (dl312) had no effect on U87MG radiosensitivity. In comparison, transfection of Ad5CMV-p53 into the p53 mutant cell line U251MG resulted in a significant decrease in the surviving fraction of these cells compared with controls, and no radiosensitization was detected. To determine whether Ad5CMV-p53—mediated radiosensitization of U87MG cells involved an increase in the propensity of these cells to undergo apoptosis, flow cytometric analysis of terminal deoxynucleotidyl transferase-mediated biotinylated-deoxyuridinetriphosphate nick-end labeling—stained cells was performed. Whereas the amount of radiation-induced apoptosis in uninfected and dl312-infected control cells was relatively small (2.1 ± 0.05% and 3.7 ± 0.5%, respectively), the combination of Ad5CMV-p53 infection and radiation treatment significantly increased the apoptotic frequency (18.6 ± 1.4%). To determine whether infection with Ad5CMV-p53 resulted in increased expression of functional exogenous p53 protein, Western blot analysis of p53 was performed on U87MG cells that were exposed to 9 Gy of radiation 2 days after exposure to Ad5CMV-p53, dl312, or DMEM. Infection with Ad5CMV-p53 alone increased p53 levels compared with DMEM- or dl312-treated cells. Irradiation of Ad5CMV-p53—infected cells resulted in a further increase in p53 that reached a maximum at 2 hours postirradiation. To determine whether exogenous p53 provided by Ad5CMV-p53 had transactivating activity, U87MG cells were treated as described earlier and p21 messenger RNA levels were determined. Infection of U87MG cells with Ad5CMV-p53 only resulted in an increase in p21 compared with DMEM- and dl312-treated cells. Irradiation of Ad5CMV-p53—infected cells resulted in an additional time-dependent increase in p21 expression. Conclusions. These data indicate that adenovirus-mediated delivery of p53 may enhance the radioresponse of brain tumor cells containing wild-type p53 and that this radiosensitization may involve converting from a clonogenic to the more sensitive apoptotic form of cell death. Although the mechanism underlying this enhanced apoptotic susceptibility is unknown, the Ad5CMV-p53—infected cells have a higher level of p53 protein, which increases further after irradiation, and this exogenous p53 is transcriptionally active. Thus, it is possible that the combination of Ad5CMV-p53 infection and radiation treatment increases p53 protein to a level that is sufficient to overcome at least partially the block in apoptosis existing in U87MG cells.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


2019 ◽  
Vol 93 (18) ◽  
Author(s):  
Artem Baidaliuk ◽  
Elliott F. Miot ◽  
Sebastian Lequime ◽  
Isabelle Moltini-Conclois ◽  
Fanny Delaigue ◽  
...  

ABSTRACT Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo. For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo. Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses. IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


2019 ◽  
Vol 201 (7) ◽  
Author(s):  
Philip M. Ireland ◽  
Helen L. Bullifent ◽  
Nicola J. Senior ◽  
Stephanie J. Southern ◽  
Zheng Rong Yang ◽  
...  

ABSTRACTThe highly virulent intracellular pathogenFrancisella tularensisis a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis ofFrancisellavirulence in the Fischer 344 rat, we have constructed anF. tularensisSchu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growthin vitro. Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. Thisin vivoselection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-typeF. tularensisSchu S4 strain.IMPORTANCEThe intracellular bacterial pathogenFrancisella tularensiscauses a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches.F. tularensisis one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important forF. tularensisunderin vitroandin vivoconditions, providing candidates that can be evaluated for vaccine or antibacterial development.


Sign in / Sign up

Export Citation Format

Share Document