Biomechanical comparison of four anterior atlantoaxial plate systems

2002 ◽  
Vol 96 (3) ◽  
pp. 313-320 ◽  
Author(s):  
Frank Kandziora ◽  
Robert Pflugmacher ◽  
Katrin Ludwig ◽  
Georg Duda ◽  
Thomas Mittlmeier ◽  
...  

Object. The optimum fixation method to achieve atlantoaxial fusion after resection of the odontoid process remains a matter of discussion. Anterior atlantoaxial plate fixation has been described by Harms as a fixation procedure to be performed after transoral odontoid resection. In recent biomechanical and clinical studies investigators have shown that this procedure is a good alternative to established posterior atlantoaxial fixation techniques, but they have also indicated the biomechanical disadvantages of the Harms plate design. Therefore, three new anterior atlantoaxial plate designs were developed. The purpose of this study was to compare these three newly designed plate systems biomechanically with that used in Harms anterior atlantoaxial plate fixation. Methods. Twenty-four human craniocervical cadaveric specimens were tested in flexion, extension, axial rotation, and lateral bending in a nonconstrained testing apparatus by using a nondestructive stiffness method. Three-dimensional displacement of C1–2 was measured with an optical measurement system. Six different groups were examined: 1) control (24 specimens); 2) unstable (after odontoidectomy and dissection of the atlantoaxial ligaments; 24 specimens); 3) Harms (anterior atlantoaxial plate fixation according to Harms; six specimens); 4) subarticular atlantoaxial plate (SAAP; six specimens); 5) transpedicular atlantoaxial plate (TAAP; six specimens); and 6) subarticular atlantoaxial locking plate (SAALP; six specimens). Stiffness, range of motion, and neutral and elastic zones were determined. Compared with the Harms plate, stiffness was significantly higher when methods for placing the SAAP, TAAP, and SAALP devices were used (p < 0.05). Angular displacement of SAALPs was less than that demonstrated in any other group (p < 0.05). Stiffness values in any direction were significantly greater for the SAALP-fixed specimens than for the TAAP, SAAP, Harms, control, or unstable specimens (p < 0.05). Conclusions. Experimentally, the SAAP, TAAP, and Harms plate achieved less stable fixation than the SAALP. Therefore, if transoral odontoid resection is performed, SAALP-fixed spines will provide significantly improved stability compared with previous fixation devices and methods. This may be a necessary prerequisite for a fast and uneventful osseous fusion even without additional posterior stabilization.

2002 ◽  
Vol 97 (4) ◽  
pp. 447-455 ◽  
Author(s):  
Denis J. DiAngelo ◽  
Jeffrey L. Scifert ◽  
Scott Kitchel ◽  
G. Bryan Cornwall ◽  
Bobby J. McVay

Object. An in vitro biomechanical study was conducted to determine the effects of anterior stabilization on cage-assisted lumbar interbody fusion biomechanics in a multilevel human cadaveric lumbar spine model. Methods. Three spine conditions were compared: harvested, bilateral multilevel cages (CAGES), and CAGES with bioabsorbable anterior plates (CBAP), tested under flexion—extension, lateral bending, and axial rotation. Measurements included vertebral motion, applied load, and bending/rotational moments. Application of anterior fixation decreased local motion and increased stiffness of the instrumented levels. Clinically, this spinal stability may serve to promote fusion. Conclusions. Coupled with the bioabsorbability of the plating material, the bioabsorbable anterior lumbar plating system is considered biomechanically advantageous.


2000 ◽  
Vol 92 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Rupert Dietl ◽  
Matthias Krammer ◽  
Christianto Lumenta ◽  
...  

Object. The function of interbody fusion cages is to stabilize spinal segments primarily by distracting them as well as by allowing bone ingrowth and fusion. An important condition for efficient formation of bone tissue is achieving adequate spinal stability. However, the initial stability may be reduced due to repeated movements of the spine during everyday activity. Therefore, in addition to immediate stability, stability after cyclic loading is of remarkable relevance; however, this has not yet been investigated. The object of this study was to investigate the immediate stabilizing effect of three different posterior lumbar interbody fusion cages and to clarify the effect of cyclic loading on the stabilization. Methods. Before and directly after implantation of a Zientek, Stryker, or Ray posterior lumbar interbody fusion cage, 24 lumbar spine segment specimens were each evaluated in a spine tester. Pure lateral bending, flexion—extension, and axial rotation moments (± 7.5 Nm) were applied continuously. The motion in each specimen was measured simultaneously. The specimens were then loaded cyclically (40,000 cycles, 5 Hz) with an axial compression force ranging from 200 to 1000 N. Finally, they were tested once again in the spine tester. Conclusions. In general, a decrease of movement in all loading directions was noted after insertion of the Zientek and Ray cages and an increase of movement after implantation of a Stryker cage. In all three cage groups greater stability was demonstrated in lateral bending and flexion than in extension and axial rotation. Reduced stability during cyclic loading was observed in all three cage groups; however, loss of stability was most pronounced when the Ray cage was used.


2004 ◽  
Vol 100 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Sung-Min Kim ◽  
T. Jesse Lim ◽  
Josemaria Paterno ◽  
Tae-Jin Hwang ◽  
Kun-Woo Lee ◽  
...  

Object. The authors compared the biomechanical stability of two anterior fixation procedures—anterior C1–2 Harms plate/screw (AHPS) fixation and the anterior C1–2 transarticular screw (ATS) fixation; and two posterior fixation procedures—the posterior C-1 lateral mass combined with C-2 pedicle screw/rod (PLM/APSR) fixation and the posterior C1–2 transarticular screw (PTS) fixation after destabilization. Methods. Sixteen human cervical spine specimens (Oc—C3) were tested in three-dimensional flexion—extension, axial rotation, and lateral bending motions after destabilization by using an atlantoaxial C1–2 instability model. In each loading mode, moments were applied to a maximum of 1.5 Nm, and the range of motion (ROM), neutral zone (NZ), and elastic zone (EZ) were determined and values compared using the intact spine, the destabilized spine, and the postfixation spine. The AHPS method produced inferior biomechanical results in flexion—extension and lateral bending modes compared with the intact spine. The lateral bending NZ and ROM for this method differed significantly from the other three fixation techniques (p < 0.05), although statistically significant differences were not obtained for all other values of ROM and NZ for the other three procedures. The remaining three methods restored biomechanical stability and improved it over that of the intact spine. Conclusions. The PLM/APSR fixation method was found to have the highest biomechanical stiffness followed by PTS, ATS, and AHPS fixation. The PLM/APSR fixation and AATS methods can be considered good procedures for stabilizing the atlantoaxial joints, although specific fixation methods are determined by the proper clinical and radiological characteristics in each patient.


1999 ◽  
Vol 90 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
Robert F. Spetzler ◽  
Volker K. H. Sonntag ◽  
...  

Object. The authors sought to determine the biomechanics of the occipitoatlantal (occiput [Oc]—C1) and atlantoaxial (C1–2) motion segments after unilateral gradient condylectomy. Methods. Six human cadaveric specimens (skull with attached upper cervical spine) underwent nondestructive biomechanical testing (physiological loads) during flexion—extension, lateral bending, and axial rotation. Axial translation from tension to compression was also studied across Oc—C2. Each specimen served as its own control and underwent baseline testing in the intact state. The specimens were then tested after progressive unilateral condylectomy (25% resection until completion), which was performed using frameless stereotactic guidance. At Oc—C1 for all motions that were tested, mobility increased significantly compared to baseline after a 50% condylectomy. Flexion—extension, lateral bending, and axial rotation increased 15.3%, 40.8%, and 28.1%, respectively. At C1–2, hypermobility during flexion—extension occurred after a 25% condylectomy, during axial rotation after 75% condylectomy, and during lateral bending after a 100% condylectomy. Conclusions. Resection of 50% or more of the occipital condyle produces statistically significant hypermobility at Oc—C1. After a 75% resection, the biomechanics of the Oc—C1 and C1–2 motion segments change considerably. Performing fusion of the craniovertebral junction should therefore be considered if half or more of one occipital condyle is resected.


2000 ◽  
Vol 93 (1) ◽  
pp. 109-116
Author(s):  
Albert V. B. Brasil ◽  
Danilo G. Coelho ◽  
Tarcísio Eloy P. B. Filho ◽  
Fernando M. Braga

Object. The authors conducted a biomechanical study in which they compared the uses of the Rogers interspinous and the Lovely-Carl tension band wiring techniques for internal fixation of the cervical spine. Method. An extensive biomechanical evaluation (stiffness in positive and negative rotations around the x, y, and z axes; range of motion in flexion—extension, bilateral axial rotation, and bilateral bending; and neutral zone in flexion—extension, bilateral axial rotation, and lateral bending to the right and to the left) was performed in two groups of intact calf cervical spines. After these initial tests, all specimens were subjected to a distractive flexion Stage 3 ligamentous lesion. Group 1 specimens then underwent surgical fixation by the Rogers technique, and Group 2 specimens underwent surgery by using the Lovely—Carl technique. After fixation, specimens were again submitted to the same biomechanical evaluation. The percentage increase or decrease between the pre- and postoperative parameters was calculated. These values were considered quantitative indicators of the efficacy of the techniques, and the efficacy of the two techniques was compared. Conclusions. Analysis of the findings demonstrated that in the spines treated with the Lovely—Carl technique less restriction of movement was produced without affecting stiffness, compared with those treated with the Rogers technique, thus making the Lovely—Carl technique clinically less useful.


2005 ◽  
Vol 3 (6) ◽  
pp. 465-470 ◽  
Author(s):  
Christopher P. Ames ◽  
Frank L. Acosta ◽  
Robert H. Chamberlain ◽  
Adolfo Espinoza Larios ◽  
Neil R. Crawford

Object. The authors present a biomechanical analysis of a newly designed bioabsorbable anterior cervical plate (ACP) for the treatment of one-level cervical degenerative disc disease. They studied anterior cervical discectomy and fusion (ACDF) in a human cadaveric model, comparing the stability of the cervical spine after placement of the bioabsorbable fusion plate, a bioabsorbable mesh, and a more traditional metallic ACP. Methods. Seven human cadaveric specimens underwent a C6–7 fibular graft—assisted ACDF placement. A one-level resorbable ACP was then placed and secured with bioabsorbable screws. Flexibility testing was performed on both intact and instrumented specimens using a servohydraulic system to create flexion—extension, lateral bending, and axial rotation motions. After data analysis, three parameters were calculated: angular range of motion, lax zone, and stiff zone. The results were compared with those obtained in a previous study of a resorbable fusion mesh and with those acquired using metallic fusion ACPs. For all parameters studied, the resorbable plate consistently conferred greater stability than the resorbable mesh. Moreover, it offered comparable stability with that of metallic fusion ACPs. Conclusions. Bioabsorbable plates provide better stability than resorbable mesh. Although the results of this study do not necessarily indicate that a resorbable plate confers equivalent stability to a metal plate, the resorbable ACP certainly yielded better results than the resorbable mesh. Bioabsorbable fusion ACPs should therefore be considered as alternatives to metal plates when a graft containment device is required.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


1996 ◽  
Vol 84 (4) ◽  
pp. 552-558 ◽  
Author(s):  
Jens R. Chapman ◽  
Paul A. Anderson ◽  
Christopher Pepin ◽  
Sean Toomey ◽  
David W. Newell ◽  
...  

✓ Fractures, tumors, and other causes of instability at the cervicothoracic junction pose diagnostic and treatment challenges. The authors report on 23 patients with instability of the cervicothoracic region, which was treated with posterior plate fixation and fusion between the lower cervical and upper thoracic spine. During operation AO reconstruction plates with 8- or 12-mm hole spacing were affixed to the spine using screws in the cervical lateral masses and the thoracic pedicles. Postoperative immobilization consisted of the patient's wearing a simple external brace for 2 months. The following parameters were analyzed during the pre- and postoperative treatment period: neurological status, spine anatomy and reconstruction, and complications. Follow up consisted of clinical and radiographic examinations (mean duration of follow up, 15.4 months; range, 6–41 months). No neurovascular or pulmonary complications arose from surgery. All patients achieved a solid arthrodesis based on flexion-extension radiographs. There was no significant change in angulation during the postoperative period, but one patient had an increase in translation that was not clinically significant. There were no hardware complications that required reoperation. One patient requested hardware removal in hopes of reducing postoperative pain in the cervicothoracic region. One postoperative wound infection required debridement but not hardware removal. The authors conclude that posterior plate fixation is a satisfactory method of treatment of cervicothoracic instability.


2004 ◽  
Vol 1 (1) ◽  
pp. 116-121 ◽  
Author(s):  
Kurt M. Eichholz ◽  
Patrick W. Hitchon ◽  
Aaron From ◽  
Paige Rubenbauer ◽  
Satoshi Nakamura ◽  
...  

Object. Thoracolumbar burst fractures frequently require surgical intervention. Although the use of either anterior or posterior instrumentation has advantages and disadvantages, there have been few studies in which these two approaches have been compared biomechanically. Methods. Ten human cadaveric spines were subjected to subtotal L-3 corpectomy. In five spines placement of L-3 wooden strut grafts with lateral L2–4 dual rod and screw instrumentation was performed. Five other spines underwent L1–5 pedicle screw fixation. The spines were fatigued between steps of the experiment. The spines were load tested with pure moments of 1.5, 3, 4.5, and 6 Nm in the intact state and after placement of instrumentation in six degrees of freedom (flexion, extension, right and left lateral bending, and right and left axial rotation). In axial rotation posterior instrumentation significantly increased spinal rigidity compared with that of the intact state, whereas anterior instrumentation did not. Combined anterior—posterior instrumentation did not significantly increase the rigidity of the spine when compared with anterior or posterior instrumentation alone. Posterior instrumentation alone provided a greater reduction in angular rotation compared with anterior instrumentation alone in all degrees of freedom; however, statistical significance was achieved only in extension at 6 Nm. Conclusions. The increased rigidity provided by pedicle screw instrumentation compared with the intact state or with anterior instrumentation is due to the longer construct spanning five levels and the three-column engagement of the pedicle screws. The decision to use anterior or posterior instrumentation should be based on the clinical necessity of canal decompression and correction of angulation.


2001 ◽  
Vol 95 (2) ◽  
pp. 208-214 ◽  
Author(s):  
Hans-Joachim Wilke ◽  
Sinead Kavanagh ◽  
Sylvia Neller ◽  
Christian Haid ◽  
Lutz Eberhart Claes

Object. Current procedures for treatment of degenerative disc disease may not restore flexibility or disc height to the intervertebral disc. Recently, a prosthetic device, intended to replace the degenerated nucleus pulposus, was developed. In this biomechanical in vitro test the authors study the effect of implanting a prosthetic nucleus in cadaveric lumbar intervertebral discs postnucleotomy and determine if the flexibility and disc height of the L4–5 motion segment is restored. Methods. The prosthetic disc nucleus device consists of two hydrogel pellets, each enclosed in a woven polyethylene jacket. Six human cadaveric lumbar motion segments (obtained in individuals who, at the time of death, were a mean age of 56.7 years) were loaded with moments of ± 7.5 Nm in flexion—extension, lateral bending, and axial rotation. The following states were investigated: intact, postnucleotomy, and after device implantation. Range of motion (ROM) and neutral zone (NZ) measurements were determined. Change in disc height from the intact state was measured after nucleotomy and device implantation, with and without a 200-N preload. Conclusions. Compared with the intact state (100%), the nucleotomy increased the ROM in flexion—extension to 118%, lateral bending to 112%, and axial rotation to 121%; once the device was implanted the ROM was reduced to 102%, 88%, and 90%, respectively. The NZ increased the ROM to 210%, lateral bending to 173%, and axial rotation to 107% after nucleotomy, and 146%, 149%, 44%, respectively, after device implantation. A 200-N preload reduced the intact and postnucleotomy disc heights by approximately 1 mm and 2 mm, respectively. The original intact disc height was restored after implantation of the device. The results of the cadaveric L4–5 flexibility testing indicate that the device can potentially restore ROM, NZ, and disc height to the denucleated segment.


Sign in / Sign up

Export Citation Format

Share Document