scholarly journals Towards Cognitive Communication and Other Applications of Cognitive Computing

2020 ◽  
Author(s):  
Andy E Williams

The term cognitive communications has been used to describe “human-centric” communication systems that adapt to different behaviors, expectations and preferences. This paper explores a more general use of the term by attempting to enumerate all communication functions that might benefit through being executed by systems of individual or collective cognition. Systems of individual cognition might be represented by intelligent agents (based on some subset of the functionality suggested to be required for Artificial General Intelligence) with the capacity to change any property of communication. Communication functions executed by such systems optimize individual outcomes. Systems of collective cognition might be represented by collective intelligence solutions (based on some subset of functionality suggested to be required for General Collective Intelligence) with the capacity to enable such intelligent agents to self-assemble into communication networks using any combination of network topology, protocols, spectrum or other properties. Communication functions executed by such systems optimize collective outcomes. From this perspective, cognitive communication is explored as a specific case that might be generalized to apply to any number of other sectors, such as cognitive power generation and distribution, cognitive agriculture, cognitive healthcare, etc.

2021 ◽  
Author(s):  
Andy E Williams

General Collective Intelligence has the potential to combine individuals into a single collective collective intelligence with general problem-solving ability (intelligence) that might be exponentially greater than that of any individual. In every software domain, including health and wellness, General Collective Intelligence and functional modeling have the potential to enable the definition of pervasive cognitive computing applications and platforms. In such cognitive apps, intelligent agents might provide services to the user that optimize their outcomes by independently executing functional operations in each software domain on whatever software best implements those operations, and independently incorporating any possible data available to the user in the best way available. And at the same time in such cognitive computing platforms, a GCI might orchestrate the process of gathering data from all such individual uses in order to optimize collective outcomes such as significantly increasing healthcare and wellness. And these models of individual and collective cognition suggest that such optimization might not be reliably achievable otherwise. For both of these cognitive computing approaches functional modeling is required to provide a universal mechanism for representing data and processes. Therefore, to achieve significantly increased healthcare and wellness outcomes both functional modeling and GCI might be required. Functional modeling has the potential to overcome the lack of consistency in type and format of data gathered and the lack of a mechanism for universally comparing and combining that data. This paper explores why functional modeling might not only be of critical importance to pervasive healthcare, but why it also might be critical to significantly improving capacity to diagnose and to make interventions.


2020 ◽  
Author(s):  
Andy E Williams

INTRODUCTION: General Collective Intelligence or GCI has been defined as a platform that combines individuals into a collective intelligence with the potential for exponentially greater general problem-solving ability (intelligence) than that of any individual in the group. Cognitive computing applications are executed by intelligent agents on a user’s behalf to optimize individual user outcomes. Cognitive computing platforms are executed by individuals organized by a GCI to achieve greater collective outcomes. The Peer to Peer Social Fabric (P2PSF) is an infrastructure platform proposed to enable the execution of cognitive computing applications or platforms.OBJECTIVES: To explore the functionality required by an infrastructure platform with the capacity to enable the operation of cognitive computing applications or platforms. And to determine whether the functionality of the proposed Peer to Peer Social Fabric is sufficient.METHODS: The requirements of collective cognitive computing were assessed, including the requirement to increase capacity for complexity, capacity to scale number of processes, and capacity to sustain processes. The proposed high-level specifications of the Peer to Peer Social Fabric were compared to those requirements to determine whether that functionality is sufficient.RESULTS: The proposed Peer to Peer Social Fabric appears to meet the requirements of both the operating system for GCI, as well as the requirements of a client enabling individuals and organizations to access either AGI or GCI functionality.CONCLUSION: All of the functionality required by he Peer to Peer Social Fabric might already exist, but an understanding of how that functionality must be combined in order to achieve the exponential increase in general problem-solving ability potentially possible through AGI or GCI is a new and important contribution.


Author(s):  
Toshinori KUWAHARA ◽  
Michael LENGOWSKI ◽  
Ulrich BEYERMANN ◽  
Alexander URYU ◽  
Hans-Peter ROESER

2021 ◽  
Author(s):  
Le Li ◽  
Zhihui Zhang ◽  
Chao Gao ◽  
Fei Zhou ◽  
Guangqiang Ma

Abstract With the development of digital instrument and control technology for nuclear power plants in recent decades, communication networks have become an important part of safety digital control systems, which takes charge in data exchange between the various sub-systems, and extremely impact on the reliability and safety of the entire I&C system. Traditional communication systems where some special features, such as reliability, safety, real-time, certainty, and independence are not strictly required are various illustrated. However, how to implement a communication system in a safety I&C system is rarely stated in current research. In this research, a reliable safety communication system applied in nuclear power plants is designed and analyzed. The five key characteristics of nuclear safety communication networks are explained, followed by explanation of how to achieve these characteristics. The analysis and verification of the designed system are also stated in this paper, which contributes to proving that the designed nuclear safety communication system could applied in the nuclear power plants.


2014 ◽  
Vol 13 (03) ◽  
pp. 1450020 ◽  
Author(s):  
Y. Saez ◽  
X. Cao ◽  
L. B. Kish ◽  
G. Pesti

We review the security requirements for vehicular communication networks and provide a critical assessment of some typical communication security solutions. We also propose a novel unconditionally secure vehicular communication architecture that utilizes the Kirchhoff-law–Johnson-noise (KLJN) key distribution scheme.


Author(s):  
В.Л. Мартынов ◽  
В.И. Дорошенко ◽  
Н.М. Божук ◽  
Ю.Г. Ксенофонтов

Решению вопросов, связанных с телекоммуникационным оборудованием, функционирующем в водной среде, в настоящее время уделяется особое внимание. На смену традиционным подводным системам обмена информацией в гидроакустических полях приходят открытые системы её оптической передачи и приёма, базирующиеся на лазерных технологиях. Это вызвано необходимостью трансляции с высокой разрешающей способностью видеоданных, среди которых, например, может быть либо визуальное отображение подводных систем в динамике, либо результаты мониторинга объектов подводной инфраструктуры в реальном масштабе времени, либо что-то другое с учётом требований Заказчика. Канал передачи такого большого объёма информации при условии ее считывания с задаваемым качеством должен иметь пропускную способность более 1 Мбит/с. Такую высокую скорость передачи невозможно реализовать в подводных гидроакустических системах, граница технических возможностей которых на превышает 10...50 кбит/с. В аналогичной ситуации при заданных параметрах канала связи частоты несущих оптического диапазона имеют порядок 1014 Гц, что обеспечивает динамический диапазон полосы пропускания в районе 1012…1013 Гц. С учётом условия квазимонохроматичности применение гидроакустических средств для передачи видеоданных становится проблематичным, так как техническая реализация такой задачи потребует слишком большого времени. С учётом сказанного, преимуществом подводных беспроводных оптических систем связи является их высокая широкополосность, которая обеспечит высокую скорость передачи данных. В статье обосновывается целесообразность использования открытых оптических системы связи для создания высокоскоростных подводных инфотелекоммуникаций, среди которых наиболее предпочтительными являются лазерные системы. Special attention is currently paid to the solution of issues related to telecommunication equipment operating in the aquatic environment. The traditional underwater systems for the exchange of information in hydroacoustic fields are being replaced by open systems for its optical transmission and reception, based on laser technologies.This is due to the need to broadcast high-resolution video data, among which, for example, there can be either a visual display of underwater systems in dynamics, or the results of monitoring objects of underwater infrastructure in real time, or something else, taking into account the requirements of the Customer. The transmission channel of such a large amount of information, provided it is read with a specified quality, must have a bandwidth of more than 1 Mbit / s. Such a high transmission rate cannot be realized in underwater sonar systems, the technical capabilities limit of which does not exceed 10 ... 50 kbit/s. In a similar situation, given the parameters of the communication channel, the carrier frequencies of the optical range are 1014 Hz, which provides a dynamic bandwidth range about 1012…1013Hz. Taking into account the condition of quasimonochromaticity, the use of hydroacoustic means for transmitting video data becomes problematic, since the technical implementation of such a task will take too long. In view of the above, the advantage of underwater wireless optical communication systems is their high broadband, which will provide a high data transfer rate. The article substantiates the expediency of using open optical communication systems for creating high-speed underwater information telecommunications, among which the most preferable are laser systems.


2020 ◽  
Vol 8 (6) ◽  
pp. 5643-5646

Since last decade, the exponential growth of the internet users and the size of data over the internet is increasing day by day, which lead to increase the complexity of the systems by implementing policies and security to avoid attacks on systems and networks. It is very important to understand and analyses the real time data traffic of the communication systems. The purpose of this paper to design a customized Java based application which enables analysts to capture the traffic at the bottleneck under the mean field communication environment where a large number of devices are communicating with each other. The sending data for further processing for analysis the trend to overcome vulnerabilities or to manage the effectiveness of the communication systems. The proposed application enables to capture 8 different types of protocol traffic such as HTTP, HTTPS, SMTP, UDP, TCP, ICMP and POP3. The application allows for analysis of the incoming/outgoing traffic in the visual to understand the nature of communication networks which lead to improve the performance of the networks with respect to hardware, software, data storage, security and reliability.


2020 ◽  
Author(s):  
Andy E Williams

INTRODUCTION: With advances in big data techniques having already led to search results and advertising being customized to the individual user, the concept of an online education designed solely for an individual, or the concept of online news or entertainment media, or any other virtual service being designed uniquely for each individual, no longer seems as far fetched. However, designing services that maximize user outcomes as opposed to services that maximize outcomes for the corporation owning them, requires modeling user processes and the outcomes they target.OBJECTIVES: To explore the use of Human-Centric Functional Modeling (HCFM) to define functional state spaces within which human processes are well-defined paths, and within which products and services solve specific navigation problems, so that by considering all of any given individual’s desired paths through a given state space, it is possible to automate the customization of those products and services for that individual or to groups of individuals.METHODS: An analysis is performed to assess how and whether intelligent agents based on some subset of functionality required for Artificial General Intelligence (AGI) might be used to optimize for the individual user. And an analysis is performed to determine whether and if so how General Collective Intelligence (GCI) might be used to optimize across all users.RESULTS: AGI and GCI create the possibility to individualize products and services, even shared services such as the Internet, or news services so that every individual sees a different version.CONCLUSION: The conceptual example of customizing a news media website for two individual users of opposite political persuasions suggests that while the overhead of customizing such services might potentially result in massively increased storage and processing overhead, within a network of cooperating services in which this customization reliably creates value, this is potentially a significant opportunity.


2021 ◽  
Author(s):  
Mohamed Daoud

In this thesis, a novel diagnostic system has been developed to increase the realibility of leaky feeder communication systems in underground mines. The new system is based on three main parts: 1) Diagnostic Receiver Unit (DRU) located in the control room above ground; 2) several Diagnostic Transponder Units (DTU) connected to amplifiers, Power Supply Units (PSU), fans and sensors; and 3) Communication protocol that was designed for this specific system. The amplifiers, PSU, fans, and sensors in the system cascade will be able to communicate freely with the control room through the leaky cable to send information about their current conditions, and receive configuration messages. A new concept is also presented that provides energy saving in mines; Ventilation-on-Demand where the fans will operate according to the current situation of each section in the mine. This is made possible through a series of interrupt messages that is sent from the DTU attached to the fan/sensor to the DRU in the control room.


Author(s):  
Stavroula Vassaki ◽  
George Pitsiladis ◽  
Stavros E. Sagkriotis ◽  
Athanasios D. Panagopoulos

Machine type communications (or Machine-to-Machine / M2M) communications have emerged as an important paradigm in wireless communication networks. The current M2M standardization activities are presented and their implementation in 4G/LTE networks is described in detail. The chapter is divided in three parts that are related to the evolution of the Future M2M communication Networks. The first part focuses on existing random access management schemes for M2M communications that are presented in the literature. The second part is devoted on spectrum sharing methods and on M2M clustering and it presents the spatial distribution of heterogeneous networks and its impact on their connectivity. Finally, the last part refers to energy efficiency issues of the future M2M communication systems and their implementation using distributed power control and MAC/scheduling algorithms.


Sign in / Sign up

Export Citation Format

Share Document