scholarly journals Effect of Different Intake Levels of Dietary Protein and Physical Exercise on Bone Mineral Density and Bone Strength in Growing Male Rats

2012 ◽  
Vol 58 (4) ◽  
pp. 240-246 ◽  
Author(s):  
Satoko TAKEDA ◽  
Yuki KOBAYASHI ◽  
Jong-Hoon PARK ◽  
Ikuko EZAWA ◽  
Naomi OMI
Bone ◽  
2006 ◽  
Vol 38 (3) ◽  
pp. 27-28 ◽  
Author(s):  
Z.G. Luo ◽  
A.T. Wang ◽  
W.S. Yu ◽  
Y. Zhao ◽  
P. Hu ◽  
...  

1992 ◽  
Vol 56 (2) ◽  
pp. 314-319 ◽  
Author(s):  
E Orwoll ◽  
M Ware ◽  
L Stribrska ◽  
D Bikle ◽  
T Sanchez ◽  
...  

2010 ◽  
Vol 21 (3) ◽  
pp. 199-204 ◽  
Author(s):  
Suzie Aparecida Lacerda ◽  
Renata Inahara Matuoka ◽  
Rander Moreira Macedo ◽  
Sergio Olavo Petenusci ◽  
Alessandra Aparecida Campos ◽  
...  

Caffeine induces loss of calcium and influences the normal development of bone. This study investigated the effects of coffee on bone metabolism in rats by biochemical measurement of calcium, bone densitometry and histometry. Male rats, born of female treated daily with coffee and with coffee intake since born, were anesthetized, subjected to extraction of the upper right incisor, and sacrificed 7, 21 and 42 days after surgery. Blood and urine samples were taken, and their maxilla radiographed and processed to obtain 5-µm-thick semi-serial sections stained with hematoxylin and eosin. The volume and bone quality were estimated using an image-analysis software. The results showed significantly greater amount of calcium in the plasma (9.40 ± 1.73 versus 9.80 ± 2.05 mg%) and urine (1.00 ± 0.50 versus 1.25 ± 0.70 mg/24 h) and significantly less amount in bone (90.0 ± 1.94 versus 86.0 ± 2.12 mg/mg bone), reduced bone mineral density (1.05 ± 0.11 versus 0.65 ± 0.15 mmAL), and lower amount of bone (76.19 ± 1.6 versus 53.41 ± 2.1 %) (ANOVA; p≤0.01) in animals treated with coffee sacrificed after 42 days. It may be concluded that coffee/caffeine intake caused serious adverse effects on calcium metabolism in rats, including increased levels of calcium in the urine and plasma, decreased bone mineral density and lower volume of bone, thus delaying the bone repair process.


2013 ◽  
Vol 144 (5) ◽  
pp. S-86
Author(s):  
Nicholas K. Weber ◽  
Jeff L. Fidler ◽  
Bart L. Clarke ◽  
Sundeep Khosla ◽  
Joel G. Fletcher ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Fabio Massimo Ulivieri ◽  
Luca Rinaudo

For a proper assessment of osteoporotic fragility fracture prediction, all aspects regarding bone mineral density, bone texture, geometry and information about strength are necessary, particularly in endocrinological and rheumatological diseases, where bone quality impairment is relevant. Data regarding bone quantity (density) and, partially, bone quality (structure and geometry) are obtained by the gold standard method of dual X-ray absorptiometry (DXA). Data about bone strength are not yet readily available. To evaluate bone resistance to strain, a new DXA-derived index based on the Finite Element Analysis (FEA) of a greyscale of density distribution measured on spine and femoral scan, namely Bone Strain Index (BSI), has recently been developed. Bone Strain Index includes local information on density distribution, bone geometry and loadings and it differs from bone mineral density (BMD) and other variables of bone quality like trabecular bone score (TBS), which are all based on the quantification of bone mass and distribution averaged over the scanned region. This state of the art review illustrates the methodology of BSI calculation, the findings of its in reproducibility and the preliminary data about its capability to predict fragility fracture and to monitor the follow up of the pharmacological treatment for osteoporosis.


Author(s):  
Abin Joy ◽  
Chaitra N ◽  
Ashok M ◽  
Handral M

ABSTRACTObjectives: This study was designed to investigate the antiosteoporotic activity of isolated anthraquinones from Morinda citrifolia fruit extract inovariectomy (OVX) induced osteoporotic rats.Methods: All the rats were divided into 4 groups (n=6 each). Group I (sham control) received vehicle, p.o., Group II OVX control (vehicle, p.o.),Group III was OVX+standard raloxifene (5.4 mg/kg, p.o.), and Group IV was OVX+Physcion (100 mg/kg, p.o.) for 90 days.Results: The daily oral administration of isolated compound physcion (100 mg/kg) for 12 weeks to the rats prevented OVX-induced osteoporosis.This was examined by serum biomarkers such as alkaline phosphatase, calcium, and tartrate resistant acid phosphatase and showed significanteffects (p<0.0001). The femur bone strength assessed by three-point bending test showed improved bone strength in physcion treated rats, andthis was supported by enhanced bone mineral density (p<0.05). The ash parameters of femur bone studied from physcion treated rats exhibited asignificant (p<0.0001) value of ash weight followed by ash calcium content. Further, femur bone histological examination revealed the protectiveeffect of the compound physcion (100 mg/kg) against OVX-induced bone loss in rats, where it showed mineralization of trabecular spaces, improvedbone compactness thereby intact bone architecture.Conclusion: This study concludes that the isolated anthraquinone physcion had a preventive effect against OVX-induced bone loss in rats.Keywords: Morinda citrifolia, Physcion, Osteoporosis, Bone mineral density, Ash mineral content.


Medicine ◽  
2020 ◽  
Vol 99 (38) ◽  
pp. e22385
Author(s):  
Ana Silvia Puente-González ◽  
Felipe Sánchez-González ◽  
Juan Elicio Hernández-Xumet ◽  
María Carmen Sánchez-Sánchez ◽  
Fausto José Barbero-Iglesias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document