The Role of a High Fat Diet in the Rerepression1 of Two Rat Liver Enzymes

1973 ◽  
Vol 144 (3) ◽  
pp. 876-881 ◽  
Author(s):  
C. A. Slayton ◽  
B. Szepesi
2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Marisol Ibet González ◽  
Danielle Vannan ◽  
Bertus Eksteen ◽  
José Luis Reyes

Abstract Inflammatory diseases of the bile ducts like primary sclerosing colangitis (PSC) are characterized by a robust cellular response targeting the biliary epithelium leading to chronic inflammation and fibrosis. Driving fibro-inflammatory diseases, NOD-like receptors such as NLRP3 have been identified as a central component to immune-mediated pathology. However, to date the role of NLRP3 in biliary diseases has been poorly explored. Here, we addressed the role of NLRP3 in the OVAbil mouse model of antigen-mediated cholangitis. As obesity continues to spread worldwide, we also evaluated the NLRP3 response in experimental cholangitis after high-fat diet exposure. We compared the extent of histopathological liver damage between OVAbil and OVAbilxNLRP3−/− mice after either a standard chow or a high-fat diet. Infiltrating immune cells were characterized by flow cytometry and levels of cytokines, chemokines and liver enzymes in blood samples were analyzed at the end of the experiment. We observed a more severe histopathological phenotype of cholangitis in absence of NLRP3, characterized by loss of bile ducts and larger inflammatory foci and higher levels of IL- 6 and CXCL10 as compared with NLRP3 sufficient mice. This phenotype was further exaggerated in the context of obesity, where cholangitis induced in NLRP3-deficient obese mice resulted in further exacerbated histopathology and increased levels of IL-13 and TNFα, suggesting a diet-specific profile. The absence of NLRP3 caused a supressed IL-17 response. In summary, our data suggest that activation of NLRP3 attenuates this antigen-mediated OVAbil model of cholangitis.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Charkhonpunya ◽  
S Sireeratawong ◽  
S Komindr ◽  
N Lerdvuthisopon

2016 ◽  
Author(s):  
Ann-Kristin Picke ◽  
Lykke Sylow ◽  
Lisbeth L V Moller ◽  
Rasmus Kjobsted ◽  
Erik Richter ◽  
...  

2021 ◽  
Vol 137 ◽  
pp. 111370
Author(s):  
Chethan Sampath ◽  
Derek Wilus ◽  
Mohammad Tabatabai ◽  
Michael L. Freeman ◽  
Pandu R. Gangula

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1740
Author(s):  
Yuning Pang ◽  
Xiang Xu ◽  
Xiaojun Xiang ◽  
Yongnan Li ◽  
Zengqi Zhao ◽  
...  

A high-fat diet often leads to excessive fat deposition and adversely affects the organism. However, the mechanism of liver fat deposition induced by high fat is still unclear. Therefore, this study aimed at acetyl-CoA carboxylase (ACC) to explore the mechanism of excessive liver deposition induced by high fat. In the present study, the ORF of ACC1 and ACC2 were cloned and characterized. Meanwhile, the mRNA and protein of ACC1 and ACC2 were increased in liver fed with a high-fat diet (HFD) or in hepatocytes incubated with oleic acid (OA). The phosphorylation of ACC was also decreased in hepatocytes incubated with OA. Moreover, AICAR dramatically improved the phosphorylation of ACC, and OA significantly inhibited the phosphorylation of the AMPK/ACC pathway. Further experiments showed that OA increased global O-GlcNAcylation and agonist of O-GlcNAcylation significantly inhibited the phosphorylation of AMPK and ACC. Importantly, the disorder of lipid metabolism caused by HFD or OA could be rescued by treating CP-640186, the dual inhibitor of ACC1 and ACC2. These observations suggested that high fat may activate O-GlcNAcylation and affect the AMPK/ACC pathway to regulate lipid synthesis, and also emphasized the importance of the role of ACC in lipid homeostasis.


2011 ◽  
Vol 8 (1) ◽  
pp. 5 ◽  
Author(s):  
Venkata J Adapala ◽  
Kimberly K Buhman ◽  
Kolapo M Ajuwon

Sign in / Sign up

Export Citation Format

Share Document