Experimental and computational evaluation of mass transfer resistance of paper dryer fabrics

1995 ◽  
Vol 10 (3) ◽  
pp. 174-182
Author(s):  
Bjorn Wilhelmsson ◽  
Stig Stenstrom
1987 ◽  
Vol 109 (2) ◽  
pp. 89-93 ◽  
Author(s):  
P. Gandhidasan ◽  
M. Rifat Ullah ◽  
C. F. Kettleborough

Heat and mass transfer analysis between a desiccant-air contact system in a packed tower has been studied in application to air dehumidification employing liquid desiccant, namely calcium chloride. Ceramic 2 in. Raschig rings are used as the packing material. To predict the tower performance, a steady-state model which considers the heat and mass transfer resistances of the gas phase and the mass transfer resistance of the liquid phase is developed. The governing equations are solved on a digital computer to simulate the performance of the tower. The various parameters such as the effect of liquid concentration and temperature, air temperature and humidity and the rates of flow of air and liquid affecting the tower performance have been discussed.


2006 ◽  
Vol 71 (8-9) ◽  
pp. 957-967 ◽  
Author(s):  
Ljiljana Markovska ◽  
Vera Meshko ◽  
Mirko Marinkovski

The isotherms and kinetics of zinc adsorption from aqueous solution onto granular activated carbon (GAC) and natural zeolite were studied using an agitated batch adsorber. The maximum adsorption capacities of GAC and natural zeolite towards zinc(II) from Langmuir adsorption isotherms were determined using experimental adsorption equilibrium data. The homogeneous solid diffusion model (HSD-model) combined with external mass transfer resistance was applied to fit the experimental kinetic data. The kinetics simulation study was performed using a computer program based on the proposed mathematical model and developed using gPROMS. As the two-mass transfer resistance approach was applied, two model parameters were fitted during the simulation study. External mass transfer and solid phase diffusion coefficients were obtained to predict the kinetic curves for varying initial Zn(II) concentration at constant agitation speed and constant adsorbent mass. For any particular Zn(II) - adsorbent system, k f was constant, except for the lowest initial concentration, while D s was found to increase with increasing initial Zn(II) concentration.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Ishii Yasuo ◽  
Yoshimi Seida ◽  
Yukio Tachi ◽  
Hideki Yoshikawa

AbstractInfluence of operation factors in diffusion test of compacted bentonite (such as agitation of test solution in the reservoir, feed rate of the test solution and mass transfer resistance in the filter) on the diffusion data was examined by reservoir depletion (RD) test method using Cs+. The influence of these factors on the diffusion data was also analyzed based on the mathematical sorption-diffusion model which considered the feed of test solution and mass transfer resistance in the filter as well. The reservoir depletion data showed some remarkable influences of these operational conditions, especially in the system with low ionic strength. Change in mass transfer resistance at filter-compacted bentonite due to the operational conditions was found to be potential factor which disturb the diffusion data. The influence was reduced in the system with high ionic strength of solution.


Sign in / Sign up

Export Citation Format

Share Document