Migration Routes and Stopover Sites of Upland Geese Chloephaga Picta in South America

2018 ◽  
Vol 11 (2) ◽  
pp. 89-99 ◽  
Author(s):  
Julieta Pedrana ◽  
Klemens Pütz ◽  
Lucía Bernad ◽  
Juan Pablo Seco Pon ◽  
Antonella Gorosabel ◽  
...  

The Upland Goose (Chloephaga picta picta) is a migratory species of South America, which breeds from September to April in Patagonia (Argentina and Chile) and winters from May to September in the southern Pampas (Argentina). Despite some protection in both countries, this species is still persecuted and large numbers are killed by unregulated hunting. Therefore, precise knowledge of their migratory routes is vital to ensure protection of necessary resources and sites throughout the year. We deployed five miniaturised satellite transmitters on adult Upland Geese to gather data about breeding, wintering and stopover sites all along their migratory routes. We aimed to identify important areas in the wintering and breeding grounds through kernel density analyses, and to match these sites along the migration routes with protected areas. Tracked birds exhibited different migration routes and reached different breeding grounds. Two individuals travelled from their wintering grounds in Buenos Aires province to their presumed breeding areas in southern Patagonia. However, we also found different stopover sites from another bird in northern Patagonia, from the ones postulated before, and evidence that some Upland Geese are not large-scale migrants. Our results highlight a considerable amount of plasticity in Upland Geese migratory behaviour. This study represents an essential first step towards identifying important stopover sites along the Upland Geese flyways and it also highlights the lack of protected habitats along most of their migration routes.

2010 ◽  
Vol 20 (3) ◽  
pp. 240-254 ◽  
Author(s):  
STEVEN W. EVANS ◽  
H. BOUWMAN

SummaryThe Blue Swallow Hirundo atrocaerulea is restricted to sub-Saharan Africa, its population size previously estimated at fewer than 1,500 pairs, and is classified as Vulnerable. A better understanding of its current distributional range, population size, protection status and migration routes would improve our ability to conserve the species and the grassland and wetland habitat on which it depends. We now estimate that the Blue Swallow population in the 1850s may have numbered between 1,560 and 2,300 pairs. Based on an assessment of available data, we now estimate the total current Blue Swallow population at 1,006 pairs or 2,012 individuals, an estimated 36–56% decline over the last 150 years. There may be three separate Blue Swallow sub-populations and seven separate migratory routes between their breeding and non-breeding grounds. The Blue Swallow’s range in South Africa and Swaziland has contracted by 74%. The majority of Blue Swallows occupy unprotected areas on their non-breeding grounds in the Democratic Republic of the Congo, Uganda and Kenya. The Blue Swallow population in Africa will continue to decline unless the causes of reduction in Blue Swallow habitat quantity and quality can be stopped and sufficient and additional habitat set aside to sustain viable Blue Swallow populations throughout their range.


2019 ◽  
Vol 8 (12) ◽  
pp. 535 ◽  
Author(s):  
Clara Tattoni ◽  
Marco Ciolli

Bird migration is a long studied phenomenon that involves animals moving back and forth from wintering sites and to reproductive grounds. Several studies have focused on identifying the timing, physiology and evolution of migration, but a spatial approach to understand the migratory routes is still an open challenge. Geographic Information Systems (GIS) can provide the tools to explore such a complicated issue. Birds usually move from the wintering sites to spring breeding grounds in multiple flights, stopping at intermediate sites to rest and refuel, being unable to cover the distance in a single travel. The choice of stopover sites by birds depends not only on their ecological features but also on their position and visibility along main migratory flyways. In this work, we calculated the possible migratory routes that minimize the distance covered or the elevation gaps for birds crossing the Southern Alps, simulating the flight within a network connecting potential stopover sites and other relevant point of passage, using the shortest path computation. Subsequently, we performed a visibility analysis along the identified flyways to understand which stopover sites, belonging to the Natura2000 network, were visible for a bird in an area with complex morphology. Data available from ringing stations confirm the selection or avoidance of some stopover sites based on their en route visibility. The knowledge of bird flyways and stopover sites has implications for conservation as well as for planning, especially for wind farms or other infrastructures.


Plant Ecology ◽  
2021 ◽  
Author(s):  
Emma-Liina Marjakangas ◽  
Otso Ovaskainen ◽  
Nerea Abrego ◽  
Vidar Grøtan ◽  
Alexandre A. de Oliveira ◽  
...  

AbstractSpecies co-occurrences in local communities can arise independent or dependent on species’ niches. However, the role of niche-dependent processes has not been thoroughly deciphered when generalized to biogeographical scales, probably due to combined shortcomings of data and methodology. Here, we explored the influence of environmental filtering and limiting similarity, as well as biogeographical processes that relate to the assembly of species’ communities and co-occurrences. We modelled jointly the occurrences and co-occurrences of 1016 tropical tree species with abundance data from inventories of 574 localities in eastern South America. We estimated species co-occurrences as raw and residual associations with models that excluded and included the environmental effects on the species’ co-occurrences, respectively. Raw associations indicate co-occurrence of species, whereas residual associations indicate co-occurrence of species after accounting for shared responses to environment. Generally, the influence of environmental filtering exceeded that of limiting similarity in shaping species’ co-occurrences. The number of raw associations was generally higher than that of the residual associations due to the shared responses of tree species to the environmental covariates. Contrary to what was expected from assuming limiting similarity, phylogenetic relatedness or functional similarity did not limit tree co-occurrences. The proportions of positive and negative residual associations varied greatly across the study area, and we found a significant tendency of some biogeographical regions having higher proportions of negative associations between them, suggesting that large-scale biogeographical processes limit the establishment of trees and consequently their co-occurrences.


Island Arc ◽  
2012 ◽  
Vol 21 (4) ◽  
pp. 327-350 ◽  
Author(s):  
Mi Kyung Choo ◽  
Mi Jung Lee ◽  
Jong Ik Lee ◽  
Kyu Han Kim ◽  
Kye-Hun Park

2021 ◽  
Author(s):  
Juan Daniel Rios-Arboleda

<p>This research expands the original analysis of Baker and Costa (1987) including data from Europe and South America with the objective to understand if there are emerging latitudinal patterns. In addition, the threshold proposed by Zimmermann et al. (1997) it is evaluated with the data from tropical zones finding that this is a good predictor.</p><p>Mainly, recent Debris Flow occurred in South America are analyzed with the aim of identifying the best risk management strategies and their replicability for developing countries, particularly, the cases that have occurred in Colombia and Venezuela in the last 30 years are analyzed in order to compare management strategies and understand which are the most vulnerable areas to this phenomenon.</p><p>It is concluded that large-scale and multinational projects such as SED ALP are required in South America to better characterize events that have left multiple fatalities (sometimes hundreds of people) and better understand how to manage the risk on densely populated areas.</p><p>Finally, the use of amateur videos is proposed to characterize these events in nations with limited budgets for projects such as SED ALP, methodology that will be described extensively in later works.</p>


Phytotaxa ◽  
2017 ◽  
Vol 319 (3) ◽  
pp. 254 ◽  
Author(s):  
M. ÁNGELES ALONSO ◽  
MANUEL B. CRESPO ◽  
HELMUT FREITAG

The name Salicornia cuscoensis given to a plant from high Andean saltmarshes near Cusco [Cuzco] and Ayacucho, Peru (South America) is validated by a diagnosis and description. The main morphological characters that separate S. cuscoensis from other closely related species are creeping habit, delicate branches, inflorescence of short and thin spikes, and seed indumentum. The new species clearly differs from other perennial Salicornia taxa growing in high Andean saltmarshes such as S. pulvinata and S. andina. The former forms small compact cushions producing very short, few-flowered inflorescences. The latter shows woody stems and forms larger rounded carpets. Morphologically, S. cuscoensis is also similar to S. magellanica, a species growing along the seashore in southern Patagonia and Tierra del Fuego, but the latter has shorter and wider inflorescences and larger seeds with a different type and arrangement of indumentum. Molecular analyses also supported the separation of S. cuscoensis. Data on habitat, distribution and phylogenetic relationships are presented for the new species and its relatives, and an identification key is given for the South American taxa of the genus Salicornia.


2015 ◽  
Vol 112 (19) ◽  
pp. 6236-6241 ◽  
Author(s):  
Thomas M. Neeson ◽  
Michael C. Ferris ◽  
Matthew W. Diebel ◽  
Patrick J. Doran ◽  
Jesse R. O’Hanley ◽  
...  

In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.


2002 ◽  
Vol 59 (12) ◽  
pp. 1845-1850 ◽  
Author(s):  
Luc A Comeau ◽  
Steven E Campana ◽  
Martin Castonguay

The migration patterns of marine fishes are poorly known, in part owing to the technical limitations associated with tracking the movements of animals in deep water. Here we document a large-scale, directed, migration of Atlantic cod (Gadus morhua) off eastern Canada. Our approach was based on the acoustic tagging of 126 fish and the deployment of 69 subsurface receivers, stretching over a 160-km distance along the edge of the Laurentian Channel. After 1 year of automated recording, we found that 65% of the fish migrated out of coastal waters in two distinct runs during the summer–autumn period. The offshore-migrating fish overwintered in deep Laurentian Channel waters, returning inshore in April. Individual migration routes and migration timing were variable, indicating that the cod did not aggregate in large schools during the seasonal migration events.


2006 ◽  
Vol 61 (2) ◽  
pp. 120-134 ◽  
Author(s):  
J. May

Abstract. This study provides an inventory of geomorphological landforms in Eastern Bolivia at different spatial scales. Landforms and associated processes are interpreted and discussed regarding landscape evolution and paleoclimatic significance. Thereby, preliminary conclusions about past climate changes and the geomorphic evolution in Eastern Bolivia can be provided. Fluvial and aeolian processes are presently restricted to a few locations in the study area. A much more active landscape has been inferred from large-scale Channel shifts and extensive paleodune Systems. Mobilization. transport and deposition of Sediments are thought to be the result of climatic conditions drier than today. However. there are also indications of formerly wetter conditions such as fluvial erosion and paleolake basins. In conclusion, the documentation and interpretation of the manifold landforms has shown to contain a considerable amount of paleoecological information, which might serve as the base for further paleoclimatic research in the central part of tropical South America.


Sign in / Sign up

Export Citation Format

Share Document