scholarly journals Biofuel production in the framework of circular economy

2017 ◽  
pp. 152-164
Author(s):  
Geraldine Rivera Camacho
2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 69
Author(s):  
Aldric S. Tumilar ◽  
Dia Milani ◽  
Zachary Cohn ◽  
Nick Florin ◽  
Ali Abbas

This article describes a unique industrial symbiosis employing an algae cultivation unit (ACU) at the core of a novel eco-industrial park (EIP) integrating fossil-fuel fired power generation, carbon capture, biofuel production, aquaculture, and wastewater treatment. A new modelling framework capable of designing and evaluating materials and energy exchanges within an industrial eco-system is introduced. In this scalable model, an algorithm was developed to balance the material and energy exchanges and determine the optimal inputs and outputs based on the industrial symbiosis objectives and participating industries. Optimizing the functionality of the ACU not only achieved a substantial emission reduction, but also boosted aquaculture, biofuel, and other chemical productions. In a power-boosting scenario (PBS), by matching a 660 MW fossil fuel-fired power plant with an equivalent solar field in the presence of ACU, fish-producing aquaculture and biofuel industries, the net CO2 emissions were cut by 60% with the added benefit of producing 39 m3 biodiesel, 6.7 m3 bioethanol, 0.14 m3 methanol, and 19.55 tons of fish products annually. Significantly, this article shows the potential of this new flexible modelling framework for integrated materials and energy flow analysis. This integration is an important pathway for evaluating energy technology transitions towards future low-emission production systems, as required for a circular economy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anjani Devi Chintagunta ◽  
Gaetano Zuccaro ◽  
Mahesh Kumar ◽  
S. P. Jeevan Kumar ◽  
Vijay Kumar Garlapati ◽  
...  

Biodiesel is an eco-friendly, renewable, and potential liquid biofuel mitigating greenhouse gas emissions. Biodiesel has been produced initially from vegetable oils, non-edible oils, and waste oils. However, these feedstocks have several disadvantages such as requirement of land and labor and remain expensive. Similarly, in reference to waste oils, the feedstock content is succinct in supply and unable to meet the demand. Recent studies demonstrated utilization of lignocellulosic substrates for biodiesel production using oleaginous microorganisms. These microbes accumulate higher lipid content under stress conditions, whose lipid composition is similar to vegetable oils. In this paper, feedstocks used for biodiesel production such as vegetable oils, non-edible oils, oleaginous microalgae, fungi, yeast, and bacteria have been illustrated. Thereafter, steps enumerated in biodiesel production from lignocellulosic substrates through pretreatment, saccharification and oleaginous microbe-mediated fermentation, lipid extraction, transesterification, and purification of biodiesel are discussed. Besides, the importance of metabolic engineering in ensuring biofuels and biorefinery and a brief note on integration of liquid biofuels have been included that have significant importance in terms of circular economy aspects.


2020 ◽  
Vol 9 (4) ◽  
pp. 173-185
Author(s):  
A. Tambi ◽  
Svetlana Morkovina ◽  
Igor Grigorev ◽  
V Grigor'ev

The growing interest in energy security and renewable energy in Europe and Asia has stimulated the demand for wood briquettes and pellets. The production of energy from pellets per unit of investment is cheaper than the production of gas and oil, which determines the development of a circular economy in the Russian Federation. In Russia the main producers of pellets and fuel briquettes are large timber companies. At the same time, small business is an active producer of biofuels. The article presents the results of an expert survey of business representatives in the field of biofuel production, as well as analytical information on production, capacity utilization, sales and raw materials for the production of fuel briquettes from wood waste in the Russian Federation. It has been established that the main factors affecting the price of pellets and fuel briquettes are: formed market demand, the method of transportation and packaging of products, as well as their quality. Expanding domestic production of wood pellets is the number one task for Russian producers, given the growth of the global pellet market. Moreover, in a number of countries in Europe and America, the main exporters of pellets and fuel briquettes, measures to support manufacturers are actively implemented. Support is needed at all state levels to accelerate the development of new industries and industries in the field of biofuel and bioenergy. The most popular measures to support domestic producers of biofuels may be reduction in tax rates, compensation for the costs of certification of products for small and medium-sized businesses. According to our estimates, we can expect further growth in the production of fuel briquettes, the intensity of which will, in many respects, be determined by the possibility of subsidizing transport transportation and the development of the domestic biofuel market. The domestic market for pellets and fuel briquettes will stagnate without the support of biofuel producers, and pricing and certification is an important element for developing the export potential of industry enterprises


Author(s):  
Mónica Duque-Acevedo ◽  
Luis Jesús Belmonte-Ureña ◽  
Natalia Yakovleva ◽  
Francisco Camacho-Ferre

As of now, circular economic production models of the circular economy (CEPMs), which include circular economy, bioeconomy, and circular bioeconomy, are among the main tools characterizing development policies in different countries. During the last five years, policies and strategies regarding CEPMs have promoted and contributed to the development of research on this topic. The evolution and most relevant aspects of the three CEPMs previously mentioned have been analyzed from a sample of 2190 scientific publications obtained from the Scopus database. Bibliometric analysis has been used to evaluate the approach of these models in agriculture and to introduce the ways in which they address the management of agricultural waste biomass (AWB). Results show that the circular economy is the most studied and prioritized model in China and most European countries, with the UK leading the way. Germany leads in topics related to the bioeconomy. The management policies and strategies of the circular bioeconomy are key to promoting research focused on AWB valorization since bioenergy and/or biofuel production continue to be a priority.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

Author(s):  
Tamara Merkulova ◽  
Kateryna Kononova ◽  
Olena Titomir

Author(s):  
Susan EVANS

This case study explores the strategic business opportunities, for Lane Crawford, an iconic luxury department store, to transition in a circular economy towards sustainability. A new experimentation framework was developed and conducted among cross departmental employees, during a Design Lab, with intention to co-create novel Circular Economy business concepts towards a new vision: the later was a reframe of the old system based on the principles of sustainability; to move beyond a linear operational model towards a circular economy that can contribute to a regenerative society. This work draws on both academic and professional experience and was conducted through professional practice. It was found that innovative co-created concepts, output from the Design Lab, can create radical change in a circular economy that is holistically beneficial and financially viable; looking forward to extract greater value a)Internal organization requires remodeling to transform towards a circular economy; b)Requirement for more horizonal teams across departments vs solely vertical; c)New language and relationships are required to be able to transition towards a circular economy; d)Some form of physical and virtual space requirements, for cross-disciplinary teams to come together to co-create; e)Ability to iterate, learn and evolve requires agency across the business


Sign in / Sign up

Export Citation Format

Share Document