scholarly journals Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production

2021 ◽  
Vol 12 ◽  
Author(s):  
Anjani Devi Chintagunta ◽  
Gaetano Zuccaro ◽  
Mahesh Kumar ◽  
S. P. Jeevan Kumar ◽  
Vijay Kumar Garlapati ◽  
...  

Biodiesel is an eco-friendly, renewable, and potential liquid biofuel mitigating greenhouse gas emissions. Biodiesel has been produced initially from vegetable oils, non-edible oils, and waste oils. However, these feedstocks have several disadvantages such as requirement of land and labor and remain expensive. Similarly, in reference to waste oils, the feedstock content is succinct in supply and unable to meet the demand. Recent studies demonstrated utilization of lignocellulosic substrates for biodiesel production using oleaginous microorganisms. These microbes accumulate higher lipid content under stress conditions, whose lipid composition is similar to vegetable oils. In this paper, feedstocks used for biodiesel production such as vegetable oils, non-edible oils, oleaginous microalgae, fungi, yeast, and bacteria have been illustrated. Thereafter, steps enumerated in biodiesel production from lignocellulosic substrates through pretreatment, saccharification and oleaginous microbe-mediated fermentation, lipid extraction, transesterification, and purification of biodiesel are discussed. Besides, the importance of metabolic engineering in ensuring biofuels and biorefinery and a brief note on integration of liquid biofuels have been included that have significant importance in terms of circular economy aspects.

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Ivana Banković-Ilić ◽  
Olivera Stamenković ◽  
Vlada Veljković

At present, edible vegetable oils are most often used feedstocks for industrial biodiesel production. In this paper, the various non-edible oils and usually used processes for biodiesel production are analyzed from the ecological and economic aspects. The aim of the paper is to present the possibilities for improving the biodiesel synthesis by employing the heterogeneous catalysts, the novel catalysts obtained from waste materials and continuous process development, especially taking into account their impact on the environment. Key words:alcoholysis, biodiesel, non-edible oils.


2018 ◽  
Vol 159 ◽  
pp. 01049 ◽  
Author(s):  
Khairil ◽  
Aulia Rizki ◽  
Iskandar ◽  
Jalaluddin ◽  
A.S. Silitonga ◽  
...  

Biodiesel production from non-edible vegetable oils is an effective way to conquer the linked problems with edible oils such as food versus fuel and other environmental impacts. Cerbera odollam oil is one of these possible non-edible feed stocks for future biodiesel production. This study evaluated the potential biodiesel production from cerbera odollam. The seed was collected and extracted from Aceh, Indonesia. Moreover, biodiesel has been produced using degummed (H3PO4) and two step acid catalyst (HCl) and alkaline catalyst (KOH). The results of properties of the cerbera odollam methyl esters show that such as viscosity was about 847.9 mm2/s, density was 3.1578 kg/m3, flash point was 214.0°C, acid value was 0.4 mg KOH/g, oxidation stability was 6.35 h, FAME content was 97.77 % w/w and heating value was 40.49 MJ/kg. After analysing these properties, it has been found that there is a huge chance to produce biodiesel from this seed which complies with the limits of ASTM 6751 and EN 14214 specifications and therefore it can boost the future production of biodiesel from non-edible sources.


2017 ◽  
Vol 168 (1) ◽  
pp. 197-200
Author(s):  
Marta AMBROSEWICZ-WALACIK ◽  
Małgorzata TAŃSKA ◽  
Marek WALACIK ◽  
Michał KOZŁOWSKI

The aim of the study was to determine the possibility of using the unconventional vegetable oils for the biofuel production. The research material were cold-pressed oils from the seeds of milk thistle, hemp and evening primrose. After conducting the initial physicochemical characteristics of oil samples, including the determination of sulphur content, acid number, viscosity at 40°C, density at 15ºC, oxidation stability and fatty acid composition, analysed oils have been subjected to the transesterification process. The roduced methyl esters were further characterized by the above-mentioned features. Additionally, the temperatures of cold filter plugging point, cloud point and flash point were determined. On the basis of the conducted analyses it was demonstrated that the obtained oils, due to the high, far in excess of acceptable, values of the viscosity and density, and too low oxidative stability could not be used as a pure fuel. A similar conclusion was formulated in case of the produced methyl esters.


2020 ◽  
Author(s):  
Thu Ha Thi Nguyen ◽  
Seunghye Park ◽  
Jooyeon Jeong ◽  
Ye Sol Shin ◽  
Sang Jun Sim ◽  
...  

Abstract Background Currently, most of the attention in renewable energy industry is focused on the development of alternative, sustainable energy sources. Microalgae are a promising feedstock for biofuel production in response to the energy crisis. The use of metabolic engineering to improve yields of biofuel-related lipid components in microalgae, without affecting cell growth, is now a promising approach to develop more sustainable energy sources and to make this approach more economically feasible. Results The CRISPR-Cas9 system was successfully applied to generate a target-specific knockout of the ELT gene in Chlamydomonas reinhardtii . The target gene encodes an enzyme involved in lipid catabolism, in which the knockout phenotype impacts fatty acid degradation. As a result, the knockout mutants show up to 28.52% increased total lipid accumulation in comparison with the wild-type strain. This is also accompanied by a shift in the fatty acid composition with an increase of up to 27.2% in the C18:1 proportion. These changes do not significantly impact cell growth. Conclusion This study provides useful insights for the improvement of the oleaginous microalgae strain for biodiesel production. The acquired elt mutants showed improved lipid accumulation and productivity without compromising the growth rate.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.


Sign in / Sign up

Export Citation Format

Share Document