scholarly journals An ice crystal model for Jupiter’s moon Europa

2003 ◽  
Vol 37 ◽  
pp. 129-133 ◽  
Author(s):  
Karen Guldbæ K Schmidt ◽  
Dorthe Dahl-Jensen

AbstractA simple model for crystal growth in the ice shell of Europa has been made in order to estimate the size of ice crystals at Europa’s surface. If mass is lost from the surface of Europa due to sputtering processes, and the ice thickness is constant in time, ice crystals will be transported upwards in the ice shell. The crystals will therefore grow under varying conditions through the shell. The model predicts that ice crystals are 4 cm– 80 m across at the surface. For the preferred parameter values, a crystal size of the order of 7 m is calculated.

1979 ◽  
Vol 27 (11) ◽  
pp. 1520-1523 ◽  
Author(s):  
P M Frederik ◽  
W M Busing

Frozen thin sections and sections from freeze-dried and embedded tissue are used for the autoradiographic localization of diffusible substances at the electron microscope level. The presence of ice crystals in such sections may limit the autoradiographic resolution. Ice crystals are formed during freezing and may grow during subsequent processing of tissue. The contribution of ice crystal growth to the final image was estimated by measuring the distribution of the ice crystal sizes in freeze-etch replicas and in sections from freeze-dried and embedded tissues. A surface layer (10-15 mu) without visible ice crystals was present in both preparations. Beneath this surface layer the diameter of ice crystals increased towards the interior with the same relationship between crystal size and distance from the surface in the freeze-etch preparation as in the freeze-dry preparation. Ice crystal growth occurring during a much longer time during freeze-drying compared to freeze-etching does not significantly contribute to the final image in the electron microscope. The formation of ice crystals during freezing determines to a large extent the image (and therefore the autoradiographic resolution) of freeze-dry preparations and this probably holds also for thin cryosections of which examples are given.


CrystEngComm ◽  
2017 ◽  
Vol 19 (16) ◽  
pp. 2163-2167 ◽  
Author(s):  
Charles H. Z. Kong ◽  
Ivanhoe K. H. Leung ◽  
Vijayalekshmi Sarojini

Synthetic antifreeze peptides based on the hyperactive antifreeze protein modify the shape of ice crystals and show enhanced antifreeze activity with the addition of a small molecule.


2017 ◽  
Author(s):  
Guillaume Mioche ◽  
Olivier Jourdan ◽  
Julien Delanoë ◽  
Christophe Gourbeyre ◽  
Guy Febvre ◽  
...  

Abstract. This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPC). We compiled and analyzed cloud in situ measurements from 4 airborne campaigns (18 flights, 71 vertical profiles in MPC) over the Greenland Sea and the Svalbard region. Cloud phase discrimination and representative vertical profiles of number, size, mass and shapes of ice crystals and liquid droplets are assessed. The results show that the liquid phase dominates the upper part of the MPC with high concentration of small droplets (120 cm−3, 15&tinsp;μm), and averaged LWC around 0.2 g m−3. The ice phase is found everywhere within the MPC layers, but dominates the properties in the lower part of the cloud and below where ice crystals precipitate down to the surface. The analysis of the ice crystal morphology highlights that irregulars and rimed are the main particle habit followed by stellars and plates. We hypothesize that riming and condensational growth processes (including the Wegener-Bergeron-Findeisein mechanism) are the main growth mechanisms involved in MPC. The differences observed in the vertical profiles of MPC properties from one campaign to another highlight that large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations which lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling are also determined, such as IWC (and LWC) – extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature. Finally, 4 flights collocated with active remote sensing observations from CALIPSO and CloudSat satellites are specifically analyzed to evaluate the cloud detection and cloud thermodynamical phase DARDAR retrievals. This comparison is valuable to assess the sub-pixel variability of the satellite measurements as well as their shortcomings/performance near the ground.


1993 ◽  
Vol 18 ◽  
pp. 208-210
Author(s):  
Hitoshi Shoji ◽  
Atau Mitani ◽  
Kohji Horita ◽  
Chester C. Langway

Continuous crystal-size measurements made on the G6 Antarctic ice core (100m deep) show enhanced growth rates above a depth of 30 m (Zone 1) and in the interval between 70 and 80 m (Zone 2). Crystal growth in Zone 1 most probably takes place by a process of sublimation and condensation. The higher growth rate in Zone 2 is most probably related to the pore close-off transformation process in which a non-uniform strain field is created to form air bubbles by plastic deformation and “cannibalization” of individual ice crystals.


2018 ◽  
Vol 115 (29) ◽  
pp. 7479-7484 ◽  
Author(s):  
Maddalena Bayer-Giraldi ◽  
Gen Sazaki ◽  
Ken Nagashima ◽  
Sepp Kipfstuhl ◽  
Dmitry A. Vorontsov ◽  
...  

Ice-binding proteins (IBPs) affect ice crystal growth by attaching to crystal faces. We present the effects on the growth of an ice single crystal caused by an ice-binding protein from the sea ice microalga Fragilariopsis cylindrus (fcIBP) that is characterized by the widespread domain of unknown function 3494 (DUF3494) and known to cause a moderate freezing point depression (below 1 °C). By the application of interferometry, bright-field microscopy, and fluorescence microscopy, we observed that the fcIBP attaches to the basal faces of ice crystals, thereby inhibiting their growth in the c direction and resulting in an increase in the effective supercooling with increasing fcIBP concentration. In addition, we observed that the fcIBP attaches to prism faces and inhibits their growth. In the event that the effective supercooling is small and crystals are faceted, this process causes an emergence of prism faces and suppresses crystal growth in the a direction. When the effective supercooling is large and ice crystals have developed into a dendritic shape, the suppression of prism face growth results in thinner dendrite branches, and growth in the a direction is accelerated due to enhanced latent heat dissipation. Our observations clearly indicate that the fcIBP occupies a separate position in the classification of IBPs due to the fact that it suppresses the growth of basal faces, despite its moderate freezing point depression.


The practice of cold storage for preserving labile material of biological origin is widespread. The general utility of this method and the successful preservation of living cells and tissues in the frozen state has overshadowed the fact that freezing can be a harmful process to living cells (Wood 1956). It used to be thought that the crushing or spearing action of ice crystal growth was the principal source of damage by freezing; indeed so reasonable is this theory that it is difficult to believe that some at least of the harmful effects of freezing are not due to this cause. The development of the theories of damage by ice crystal growth have been described in detail by Luyet & Gehenio (1940), and by Meryman (1956). By contrast with damage on a macroscopic scale which might occur during the growth of ice crystals there is evidence to show that freezing can damage the molecular constituents of living cells, and this is most unlikely to be a direct consequence of the intrusion of ice crystals. This aspect of the problem of freezing damage forms the basis of this paper.


2008 ◽  
Vol 8 (4) ◽  
pp. 13017-13042
Author(s):  
E. Fries ◽  
W. Haunold ◽  
E. Starokozhev ◽  
K. Palitzsch ◽  
R. Sitals ◽  
...  

Abstract. Both, gas and particle scavenging contribute to the transport of organic compounds by ice crystals in the troposphere. To simulate these processes an experimental setup was developed to form airborne ice crystals under atmospheric conditions. Experiments were performed in a wall independent reactor (WIR) installed in a walk-in cold chamber maintained constantly at −20°C. Aerosol particles were added to the carrier gas of ambient air by an aerosol generator to allow heterogeneous ice formation. Temperature variations and hydrodynamic conditions of the WIR were investigated to determine the conditions for ice crystal formation and crystal growth by vapour deposition. In detail, the dependence of temperature variations from flow rate and temperature of the physical wall as well as temperature variations with an increasing reactor depth were studied. The conditions to provide a stable aerosol concentration in the carrier gas flow were also studied. The temperature distribution inside the reactor was strongly dependent on flow rate and physical wall temperature. At an inlet temperature of −20°C, a flow rate of 30 L•min−1 and a physical wall temperature of +5°C turned out to provide ideal conditions for ice formation. At these conditions a sharp and stable laminar down draft "jet stream" of cold air in the centre of the reactor was produced. Temperatures measured at the chamber outlet were kept well below the freezing point in the whole reactor depth of 1.0 m. Thus, melting did not affect ice formation and crystal growth. The maximum residence time for airborne ice crystals was calculated to at 40 s. Ice crystal growth rates increased also with increasing reactor depth. The maximum ice crystal growth rate was calculated at 2.82 mg• s−1. Further, the removal efficiency of the cleaning device for aerosol particles was 99.8% after 10 min. A reliable particle supply was attained after a preliminary lead time of 15 min. Thus, the minimum lead time was determined at 25 min. Several test runs revealed that the WIR is suitable to perform experiments with airborne ice crystals.


2007 ◽  
Vol 7 (1) ◽  
pp. 1295-1325 ◽  
Author(s):  
T. J. Garrett ◽  
M. B. Kimball ◽  
G. G. Mace ◽  
D. G. Baumgardner

Abstract. In this study, characteristic optical sizes of ice crystals in synoptic cirrus are determined using airborne measurements of ice crystal size distributions, optical extinction and water content. The measurements are compared with coincident visual observations of ice cloud optical phenomena, in particular the 22° and 46° halos. In general, the scattering profiles derived from the in-situ cloud probe measurements are consistent with the observed halo characteristics. It is argued that this implies that the measured ice crystals were small, probably with characteristic optical radii between 10 and 20 μm. There is a current contention that in-situ measurements of high concentrations of small ice crystals reflect artifacts from the shattering of large ice crystals on instrument inlets. Significant shattering cannot be entirely excluded using this approximate technique, but it is not indicated. On the basis of the in-situ measurements, a parameterization is provided that relates the optical effective radius of ice crystals to the temperature in mid-latitude synoptic cirrus.


1993 ◽  
Vol 18 ◽  
pp. 208-210 ◽  
Author(s):  
Hitoshi Shoji ◽  
Atau Mitani ◽  
Kohji Horita ◽  
Chester C. Langway

Continuous crystal-size measurements made on the G6 Antarctic ice core (100m deep) show enhanced growth rates above a depth of 30 m (Zone 1) and in the interval between 70 and 80 m (Zone 2). Crystal growth in Zone 1 most probably takes place by a process of sublimation and condensation. The higher growth rate in Zone 2 is most probably related to the pore close-off transformation process in which a non-uniform strain field is created to form air bubbles by plastic deformation and “cannibalization” of individual ice crystals.


2011 ◽  
Vol 11 (12) ◽  
pp. 5853-5865 ◽  
Author(s):  
M. Kübbeler ◽  
M. Hildebrandt ◽  
J. Meyer ◽  
C. Schiller ◽  
Th. Hamburger ◽  
...  

Abstract. The frequency of occurrence of cirrus clouds and contrails, their life time, ice crystal size spectra and thus their radiative properties depend strongly on the ambient distribution of the relative humidity with respect to ice (RHice). Ice clouds do not form below a certain supersaturation and both cirrus and contrails need at least saturation conditions to persist over a longer period. Under subsaturated conditions, cirrus and contrails should dissipate. During the mid-latitude aircraft experiment CONCERT 2008 (CONtrail and Cirrus ExpeRimenT), RHice and ice crystals were measured in cirrus and contrails. Here, we present results from 2.3/1.7 h of observation in cirrus/contrails during 6 flights. Thin and subvisible cirrus with contrails embedded therein have been detected frequently in a subsaturated environment. Nevertheless, ice crystals up to radii of 50 μm and larger, but with low number densities were often observed inside the contrails as well as in the cirrus. Analysis of the meteorological situation indicates that the crystals in the contrails were entrained from the thin/subvisible cirrus clouds, which emerged in frontal systems with low updrafts. From model simulations of cirrus evaporation times it follows that such thin/subvisible cirrus can exist for time periods of a couple of hours and longer in a subsaturated environment and thus may represent a considerable part of the cirrus coverage.


Sign in / Sign up

Export Citation Format

Share Document