scholarly journals Intra-annual and intra-seasonal flow dynamics of a High Arctic polythermal valley glacier

2003 ◽  
Vol 37 ◽  
pp. 181-188 ◽  
Author(s):  
Robert G. Bingham ◽  
Peter W. Nienow ◽  
Martin J. Sharp

AbstractMeasurements of surface dynamics on polythermal John Evans Glacier, Nunavut, Canada, over two winter periods and every 7–10 days throughout two melt seasons (June–July 2000, 2001) provide new insight into spatio-temporal patterns of High Arctic glacier dynamics. In the lower ablation zone, mean annual surface velocities are 10–21 m a–1, but peak velocities up to 50% higher are attained during late June/early July. In the upper ablation zone and lower accumulation zone, mean annual surface velocities are typically 10–18 m a–1, and peak velocities up to 40% higher occur during late July. In the upper accumulation zone, mean annual surface velocities are 2–9 m a–1, and motion in mid- to late July exceeds this by up to 10%. Rapid drainage of ponded supraglacial water in the upper ablation zone to an initially distributed subglacial drainage system in mid-June may force excess surface motion in the warm-based lower glacier. The data indicate that the duration of the velocity response may be related to the rate of channelization of the basal drainage, and the velocity response may be transmitted up-glacier by longitudinal coupling. An increase in surface velocities in the middle glacier in late July occurs in conjunction with the opening of two further moulins in the accumulation zone.

2020 ◽  
Vol 66 (256) ◽  
pp. 278-290
Author(s):  
Lena U. Hansen ◽  
Jan A. Piotrowski ◽  
Douglas I. Benn ◽  
Heidi Sevestre

AbstractRecent speleological surveys of meltwater drainage systems in cold and polythermal glaciers have documented dynamic englacial and in some cases subglacial conduits formed by the ‘cut-and-closure’ mechanism. Investigations of the spatial distribution of such conduits often require a combination of different methods. Here, we studied the englacial drainage system in the cold glacier Longyearbreen, Svalbard by combining speleological exploration of a 478 m long meltwater conduit with a high-resolution ground penetrating radar (GPR) survey with two different centre-frequencies (25 and 100 MHz). The results yielded a 3-D documentation of the present englacial drainage system. The study shows that the overall form of englacial conduits can be detected from velocity−depth converted GPR data, and that the 3-D model can facilitate a method to pinpoint the reflections in a radargram corresponding with the englacial drainage system, although fine detail cannot be resolved. Visible reflections approximately parallel to the mapped englacial water drainage system likely result from sediment incorporated in the ice or from abandoned parts of the englacial drainage system.


2005 ◽  
Vol 51 (172) ◽  
pp. 15-24 ◽  
Author(s):  
Robert G. Bingham ◽  
Peter W. Nienow ◽  
Martin J. Sharp ◽  
Sarah Boon

AbstractDye-tracer experiments undertaken over two summer melt seasons at polythermal John Evans Glacier, Ellesmere Island, Canada, were designed to investigate the character of the subglacial drainage system and its evolution over a melt season. In both summers, dye injections were conducted at several moulins and traced to a single subglacial outflow. Tracer breakthrough curves suggest that supraglacial meltwater initially encounters a distributed subglacial drainage system in late June. The subsequent development and maintenance of a channelled subglacial network are dependent upon sustained high rates of surface melting maintaining high supraglacial inputs. In a consistently warm summer (2000), subglacial drainage became rapidly and persistently channelled. In a cooler summer (2001), distributed subglacial drainage predominated. These observations confirm that supraglacial meltwater can access the bed of a High Arctic glacier in summer, and induce significant structural evolution of the subglacial drainage system. They do not support the view that subglacial drainage systems beneath polythermal glaciers are always poorly developed. They do suggest that the effects on ice flow of surface water penetration to the bed of predominantly cold glaciers may be short-lived.


2006 ◽  
Vol 72 (9) ◽  
pp. 5838-5845 ◽  
Author(s):  
Maya Bhatia ◽  
Martin Sharp ◽  
Julia Foght

ABSTRACT Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.


1998 ◽  
Vol 26 ◽  
pp. 156-160 ◽  
Author(s):  
Richard Hodgkins ◽  
Martyn Tranter

The chemical composition of snow and meltwater in the 13 km2 catchment of Scott Turnerbreen, Svalbard, was investigated during the spring and summer of 1993. This paper assesses the provenance of solute in the snowpack and its impact on runoff chemistry. Dry snow contains 420μeql-1 of solute, is slightly acidic (pH 5.4) and is dominated by Na+ and Cl-. Wet snow is more dilute (total concentration 340μeql-1), and less acidic (pH 5.9). This is consistent with the elution of ions from the snowpack by meltwater. Snowpack solute can be partitioned into the following fractions: sea-salt aerosol, acid aerosol and crustal. About 98% of snowpack solute is sea salt, yielding 22000 kg km-2a-1. The behaviour of snowpack-derived Cl- in runoff is distinctive, peaking at over 800 μeql-1 early in the melt season as runoff picks up, before declining quasi-exponentially. This represents the discharge of snowmelt concentrated by elution within the snowpack which subsequently becomes relatively dilute. A solute yield of 140 kg km-2 a-1 can be attributed to anthropogenically generated acid aerosols, representing long-range atmospheric transport of pollutants, a potential contributor to Arctic runoff acidification.


Polar Science ◽  
2014 ◽  
Vol 8 (4) ◽  
pp. 397-412 ◽  
Author(s):  
Takeshi Inoue ◽  
Sakae Kudoh ◽  
Masaki Uchida ◽  
Yukiko Tanabe ◽  
Masakane Inoue ◽  
...  

2011 ◽  
Vol 29 (10) ◽  
pp. 1939-1954 ◽  
Author(s):  
A. H. Manson ◽  
C. E. Meek ◽  
X. Xu ◽  
T. Aso ◽  
J. R. Drummond ◽  
...  

Abstract. Operation of a Meteor Radar (MWR) at Eureka, Ellesmere Island (80° N, 86° W) began in February 2006: this is the location of the Polar Environmental and Atmospheric Research Laboratory (PEARL), operated by the "Canadian Network for the Detection of Atmospheric Change" (CANDAC). The first 36 months of tidal wind data (82–97 km) are here combined with contemporaneous tides from the Meteor Radar (MWR) at Adventdalen, Svalbard (78° N, 16° E), to provide the first significant evidence for interannual variability (IAV) of the High Arctic's diurnal and semidiurnal migrating (MT) and non-migrating tides (NMT). The three-year monthly means for both diurnal (DT) and semi-diurnal (SDT) winds demonstrate significantly different amplitudes and phases at Eureka and Svalbard. Typically the summer-maximizing DT is much larger (~24 m s−1 at 97 km) at Eureka, while the Svalbard tide (5–24 m s−1 at 97 km)) is almost linear (north-south) rather than circular. Interannual variations are smallest in the summer and autumn months. The High Arctic SDT has maxima centred on August/September, followed in size by the winter features; and is much larger at Svalbard (24 m s−1 at 97 km, versus 14–18 m s−1 in central Canada). Depending on the location, the IAV are largest in spring/winter (Eureka) and summer/autumn (Svalbard). Fitting of wave-numbers for the migrating and non-migrating tides (MT, NMT) determines dominant tides for each month and height. Existence of NMT is consistent with nonlinear interactions between migrating tides and (quasi) stationary planetary wave (SPW) S=1 (SPW1). For the diurnal oscillation, NMT s=0 for the east-west (EW) wind component dominates (largest tide) in the late autumn and winter (November–February); and s=+2 is frequently seen in the north-south (NS) wind component for the same months. The semi-diurnal oscillation's NMT s=+1 dominates from March to June/July. There are patches of s=+3 and +1, in the late fall-winter. These wave numbers are also consistent with SPW1-MT interactions. Comparisons for 2007 of the observed DT and SDT at 78–80° N, with those within the Canadian Middle Atmosphere Model Data Assimilation System CMAM-DAS, are a major feature of this paper. The diurnal tides for the two locations have important similarities as observed and modeled, with seasonal maxima in the mesosphere from April to October, and similar phases with long/evanescent wavelengths. However, differences are also significant: observed Eureka amplitudes are generally larger than the model; and at Svalbard the modeled tide is classically circular, rather than anomalous. For the semi-diurnal tide, the amplitudes and phases differ markedly between Eureka and Svalbard for both MWR-radar data and CMAM-DAS data. The seasonal variations from observed and modeled archives also differ at each location. Tidal NMT-amplitudes and wave-numbers for the model differ substantially from observations.


2013 ◽  
Vol 10 (3) ◽  
pp. 1835-1847 ◽  
Author(s):  
U. Riebesell ◽  
J. Czerny ◽  
K. von Bröckel ◽  
T. Boxhammer ◽  
J. Büdenbender ◽  
...  

Abstract. One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between small-scale laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile sea-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (∼50–75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine air–sea gas exchange, and (v) perform mass balance calculations. After multiple test runs in the Baltic Sea, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78°56.2′ N, 11°53.6′ E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton community and its impacts on biogeochemical cycling and air–sea exchange of climate-relevant gases. This manuscript describes the mesocosm hardware, its deployment and handling, CO2 manipulation, sampling and cleaning, including some further modifications conducted based on the experiences gained during this study.


2017 ◽  
Vol 67 (4) ◽  
pp. 868-874 ◽  
Author(s):  
Myong Chol Kim ◽  
Ok Chol Kang ◽  
Chol Myong Kim ◽  
Yumin Zhang ◽  
Zuobing Liu ◽  
...  
Keyword(s):  

2012 ◽  
Vol 9 (9) ◽  
pp. 12985-13017 ◽  
Author(s):  
U. Riebesell ◽  
J. Czerny ◽  
K. von Bröckel ◽  
T. Boxhammer ◽  
J. Büdenbender ◽  
...  

Abstract. One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between single species laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile, sea-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (~50–75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine air–sea gas exchange, and (v) perform mass balance calculations. After multiple test runs in the Baltic Sea, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78° 56.2′ N, 11° 53.6′ E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton community and its impacts on biogeochemical cycling and air/sea exchange of climate relevant gases. This manuscript describes the mesocosm hardware, its deployment and handling, CO2 manipulation, sampling and cleaning, including some further modifications conducted based on the experiences gained during this study.


Sign in / Sign up

Export Citation Format

Share Document