abstract operation
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 13 (2) ◽  
pp. 1027-1037
Author(s):  
Mu'jizatin Fadiana ◽  
Andriani Andriani

This study describes the profile of vocational high school students' metacognitive abilities in mathematics problem solving based on their logical thinking abilities. This research was conducted using descriptive research methods with a qualitative approach. The data was collected using a logical thinking ability test and problem-solving test and. Three students were selected who met different logical thinking stages: the abstract operation stage, the transition stage, and the concrete operational stage. The results showed the subject of the abstract operation stage fulfilled the metacognition stage by re-describing the given problem, knowing the relationship between what was known and what was asked, working on the problem by writing down what was known and asked and entering into the formula and also checking the answer. Transition stage subjects fulfill the metacognition stage by describing initial information and instructions, performing problem-solving steps, and counting to check completed work. The subject of concrete operations fulfills the metacognition stage by stating information and instructions that are non-specific and detailed. The subject has not been able to state the proper steps to ensure the information's conformity with the problem, and the subject sees what is done by calculating.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1137
Author(s):  
Chiara Pierpaoli ◽  
Luigi Ferrante ◽  
Nicoletta Foschi ◽  
Simona Lattanzi ◽  
Riccardo Sansonetti ◽  
...  

Mental rotation is an abstract operation whereby a person imagines rotating an object or a body part to place it in a different position. The ability to perform mental rotation was attributed to right hemisphere for objects, to the left for one’s own body images. Mental rotation seems to be basic for imitation in anatomical mode. Previous studies showed that control subjects, callosotomized and psychotic patients chose the mirror-mode when imitating without instructions; when asked to use the same or opposite limb as the model, controls chose the anatomical mode, callosotomized patients mainly used mirror mode, psychotic patients were in between. The preference of callosotomized subjects is likely due to defective mental rotation, because of the lack of the corpus callosum (CC), thus suggesting an asymmetry in the hemispheric competence for mental rotation. Present research investigated the mental rotation ability in control subjects, callosotomized and psychotic patients. All subjects were shown pictures of a model, in first or third person perspective, with a cup in her right or left hand. They had to indicate which model’s hand held the cup, by answering with a verbal or motor modality in separate experimental sessions. In both sessions, control subjects produced 99% of correct responses, callosotomy patients 62%, and psychotic patients 91%. The difference was statistically significant, suggesting a role of the CC in the integration of the two hemispheres’ asymmetric functions in mental rotation.


Author(s):  
Kostyantyn Kharchenko

The approach to organizing the automated calculations’ execution process using the web services (in particular, REST-services) is reviewed. The given solution will simplify the procedure of introduction of the new functionality in applied systems built according to the service-oriented architecture and microservice architecture principles. The main idea of the proposed solution is in maximum division of the server-side logic development and the client-side logic, when clients are used to set the abstract computation goals without any dependencies to existing applied services. It is proposed to rely on the centralized scheme to organize the computations (named as orchestration) and to put to the knowledge base the set of rules used to build (in multiple steps) the concrete computational scenario from the abstract goal. It is proposed to include the computing task’s execution subsystem to the software architecture of the applied system. This subsystem is composed of the service which is processing the incoming requests for execution, the service registry and the orchestration service. The clients send requests to the execution subsystem without any references to the real-world services to be called. The service registry searches the knowledge base for the corresponding input request template, then the abstract operation description search for the request template is performed. Each abstract operation may already have its implementation in the form of workflow composed of invocations of the real applied services’ operations. In case of absence of the corresponding workflow in the database, this workflow implementation could be synthesized dynamically according to the input and output data and the functionality description of the abstract operation and registered applied services. The workflows are executed by the orchestrator service. Thus, adding some new functions to the client side can be possible without any changes at the server side. And vice versa, adding new services can impact the execution of the calculations without updating the clients.


2011 ◽  
Vol 29 (10) ◽  
pp. 1939-1954 ◽  
Author(s):  
A. H. Manson ◽  
C. E. Meek ◽  
X. Xu ◽  
T. Aso ◽  
J. R. Drummond ◽  
...  

Abstract. Operation of a Meteor Radar (MWR) at Eureka, Ellesmere Island (80° N, 86° W) began in February 2006: this is the location of the Polar Environmental and Atmospheric Research Laboratory (PEARL), operated by the "Canadian Network for the Detection of Atmospheric Change" (CANDAC). The first 36 months of tidal wind data (82–97 km) are here combined with contemporaneous tides from the Meteor Radar (MWR) at Adventdalen, Svalbard (78° N, 16° E), to provide the first significant evidence for interannual variability (IAV) of the High Arctic's diurnal and semidiurnal migrating (MT) and non-migrating tides (NMT). The three-year monthly means for both diurnal (DT) and semi-diurnal (SDT) winds demonstrate significantly different amplitudes and phases at Eureka and Svalbard. Typically the summer-maximizing DT is much larger (~24 m s−1 at 97 km) at Eureka, while the Svalbard tide (5–24 m s−1 at 97 km)) is almost linear (north-south) rather than circular. Interannual variations are smallest in the summer and autumn months. The High Arctic SDT has maxima centred on August/September, followed in size by the winter features; and is much larger at Svalbard (24 m s−1 at 97 km, versus 14–18 m s−1 in central Canada). Depending on the location, the IAV are largest in spring/winter (Eureka) and summer/autumn (Svalbard). Fitting of wave-numbers for the migrating and non-migrating tides (MT, NMT) determines dominant tides for each month and height. Existence of NMT is consistent with nonlinear interactions between migrating tides and (quasi) stationary planetary wave (SPW) S=1 (SPW1). For the diurnal oscillation, NMT s=0 for the east-west (EW) wind component dominates (largest tide) in the late autumn and winter (November–February); and s=+2 is frequently seen in the north-south (NS) wind component for the same months. The semi-diurnal oscillation's NMT s=+1 dominates from March to June/July. There are patches of s=+3 and +1, in the late fall-winter. These wave numbers are also consistent with SPW1-MT interactions. Comparisons for 2007 of the observed DT and SDT at 78–80° N, with those within the Canadian Middle Atmosphere Model Data Assimilation System CMAM-DAS, are a major feature of this paper. The diurnal tides for the two locations have important similarities as observed and modeled, with seasonal maxima in the mesosphere from April to October, and similar phases with long/evanescent wavelengths. However, differences are also significant: observed Eureka amplitudes are generally larger than the model; and at Svalbard the modeled tide is classically circular, rather than anomalous. For the semi-diurnal tide, the amplitudes and phases differ markedly between Eureka and Svalbard for both MWR-radar data and CMAM-DAS data. The seasonal variations from observed and modeled archives also differ at each location. Tidal NMT-amplitudes and wave-numbers for the model differ substantially from observations.


2011 ◽  
Vol 29 (10) ◽  
pp. 1927-1938 ◽  
Author(s):  
A. H. Manson ◽  
C. E. Meek ◽  
X. Xu ◽  
T. Aso ◽  
J. R. Drummond ◽  
...  

Abstract. Operation of a Meteor Wind Radar (MWR) at Eureka, Ellesmere Island (80° N, 86° W) began in February 2006; this is the location of the Polar Environmental and Atmospheric Research Laboratory (PEARL), operated by the "Canadian Network for the Detection of Atmospheric Change" (CANDAC). The first 36 months of wind data (82–97 km) are here combined with contemporaneous winds from the Meteor Wind Radar at Adventdalen, Svalbard (78° N, 16° E), to provide the first evidence for substantial interannual variability (IAV) of longitudinally spaced observations of mean/background winds and waves at such High Arctic latitudes. The influences of "Sudden Stratospheric Warmings" (SSW) are also apparent. Monthly meridional (north-south, NS) 3-year means for each location/radar demonstrate that winds (82–97 km) differ significantly between Canada and Norway, with winter-equinox values generally northward over Eureka and southward over Svalbard. Using January 2008 as case study, these oppositely directed meridional winds are related to mean positions of the Arctic mesospheric vortex. The vortex is from the Canadian Middle Atmosphere Model, with its Data Assimilation System (CMAM-DAS). The characteristics of "Sudden stratospheric Warmings" SSW in each of the three winters are noted, as well as their uniquely distinctive short-term mesospheric wind disturbances. Comparisons of the mean winds over 36 months at 78 and 80° N, with those within CMAM-DAS, are featured. E.g. for 2007, while both monthly mean EW and NS winds from CMAM/radar are quite similar over Eureka (82–88 km), the modeled autumn-winter NS winds over Svalbard (73–88 km) differ significantly from observations. The latter are southward, and the modeled winds over Svalbard are predominately northward. The mean positions of the winter polar vortex are related to these differences.


2009 ◽  
Vol 27 (3) ◽  
pp. 1153-1173 ◽  
Author(s):  
A. H. Manson ◽  
C. E. Meek ◽  
T. Chshyolkova ◽  
X. Xu ◽  
T. Aso ◽  
...  

Abstract. Operation of a Meteor Radar at Eureka, Ellesmere Island (80° N, 86° W) began in February 2006. The first 12 months of wind data (82–97 km) are combined with winds from the Adventdalen, Svalbard Island (78° N, 16° E) Meteor Radar to provide the first contemporaneous longitudinally spaced observations of mean winds, tides and planetary waves at such high Arctic latitudes. Unique polar information on diurnal non-migrating tides (NMT) is provided, as well as complementary information to that existing for the Antarctic on the semidiurnal NMT. Zonal and meridional monthly mean winds differed significantly between Canada and Norway, indicating the influence of stationary planetary waves (SPW) in the Arctic mesopause region. Both diurnal (D) and semi-diurnal (SD) winds also demonstrated significantly different magnitudes at Eureka and Svalbard. Typically the D tide was larger at Eureka and the SD tide was larger at Svalbard. Tidal amplitudes in the Arctic were also generally larger than expected from extrapolation of high mid-latitude data. For example time-sequences from ~90 km showed D wind oscillations at Eureka of 30 m/s in February–March, and four day bursts of SD winds at Svalbard reached 40 m/s in June 2006. Fitting of wave numbers for the migrating and non-migrating tides (MT, NMT) successfully determines dominant tides for each month and height. For the diurnal tide, NMT with s=0, +2 (westward) dominate in non-summer months, while for the semi-diurnal tide NMT with s=+1, +3 occur most often during equinoctial or early summer months. These wave numbers are consistent with stationary planetary wave (SPW)-tidal interactions. Assessment of the global topographic forcing and atmospheric propagation of the SPW (S=1, 2) suggests these winter waves of the Northern Hemisphere are associated with the 78–80° N diurnal NMT, but that the SPW of the Southern Hemisphere winter have little influence on the summer Arctic tidal fields. In contrast the large SPW and NMT of the Arctic winter may be associated, consistent with Antarctic observations, with the observed occurrence of the semidiurnal NMT in the Antarctic summer.


Cortex ◽  
2007 ◽  
Vol 43 (3) ◽  
pp. 389-396 ◽  
Author(s):  
Shigeru Obayashi ◽  
Ryohei Matsumoto ◽  
Tetsuya Suhara ◽  
Yuji Nagai ◽  
Atsushi Iriki

Sign in / Sign up

Export Citation Format

Share Document