scholarly journals Wavelet analysis reveals periodic oscillations in a 1700 year ice-core record from Guliya, China

2006 ◽  
Vol 43 ◽  
pp. 132-136 ◽  
Author(s):  
Meixue Yang ◽  
Tandong Yao ◽  
Xiaohua Gou ◽  
Huijun Wang ◽  
Thomas Neumann

AbstractIce cores contribute important records of past climate changes. As one of the thickest ice caps in central Asia, the Guliya ice cap (35°17′ N, 81°29′ E) provides valuable information for this critical region about the past climate and environment changes. We used wavelet analysis to examine periodic temperature and precipitation oscillations over the past 1700 years recorded in the Guliya ice core. The results show non-linear oscillations in the ice-core records, with multiple timescales. Temperature records indicate persistent oscillations with periodicities of approximately 200, 150 and 70 years. Precipitation records show significant periodicities at 200, 100, 150 and 60 years. However, the amplitude modulation and frequency vary with time. Wavelet analysis can explore these time series in greater detail and furnish additional useful information.

1997 ◽  
Vol 43 (143) ◽  
pp. 90-97 ◽  
Author(s):  
Roy M. Koerner

AbstractPoor consideration has been given in many Arctic circum-polar ice-core studies to the effect of summer snow melt on chemistry, stable-isotope concentrations and time-scales. Many of these corps are drilled close to the firn line where melt is intense. Some come from below the firn line where accumulation is solely in the form of super-imposed ice. In all cases, seasonal signals are reduced or removed and, in some, time gaps develop during periods of excessive melting which situate the drill site in the ablation zone. Consequently, cross correlations of assumed synchronous events among the cores are invalid, so that time-scales along the same cores differ between authors by factors of over 2. Many so-called climatic signals are imaginary rather than real. By reference to published analyses of cores from the superimposed ice zone on Devon Ice Cap (Koerner, 1970) and Meighen Ice Cap (Koerner and Paterson, 1974), it is shown how melt affects all the normally well-established ice-core proxies and leads to their misinterpretation. Despite these limitations, the cores can give valuable low-resolution records for all or part of the Holocene. They show that the thermal maximum in the circum-polar Arctic occurred in the early Holocene. This maximum, effected negative balances on all the ice caps and removed the smaller ones. Cooler conditions in the second half of the Holocene have caused the regrowth of these same ice caps.


2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


2006 ◽  
Vol 43 ◽  
pp. 61-69 ◽  
Author(s):  
Lonnie G. Thompson ◽  
Yao Tandong ◽  
Mary E. Davis ◽  
Ellen Mosley-Thompson ◽  
Tracy A. Mashiotta ◽  
...  

AbstractTwo ice cores (118.4 and 214.7 m in length) were collected in 2000 from the Puruogangri ice cap in the center of the Tibetan Plateau (TP) in a joint US-Chinese collaborative project. These cores yield paleoclimatic and environmental records extending through the Middle Holocene, and complement previous ice-core histories from the Dunde and Guliya ice caps in northeast and northwest Tibet, respectively, and Dasuopu glacier in the Himalaya. The high-resolution Puruogangri climate record since AD 1600 details regional temperature and moisture variability. The post-1920 period is characterized by above-average annual net balance, contemporaneous with the greatest 18O enrichment of the last 400 years, consistent with the isotopically inferred warming observed in other TP ice-core records. On longer timescales the aerosol history reveals large and abrupt events, one of which is dated ∼4.7 kyr BP and occurs close to the time of a drought that extended throughout the tropics and may have been associated with centuries-long weakening of the Asian/Indian/African monsoon system. The Puruogangri climate history, combined with the other TP ice-core records, has the potential to provide valuable information on variations in the strength of the monsoon across the TP during the Holocene.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


1997 ◽  
Vol 43 (143) ◽  
pp. 90-97 ◽  
Author(s):  
Roy M. Koerner

AbstractPoor consideration has been given in many Arctic circum-polar ice-core studies to the effect of summer snow melt on chemistry, stable-isotope concentrations and time-scales. Many of these corps are drilled close to the firn line where melt is intense. Some come from below the firn line where accumulation is solely in the form of super-imposed ice. In all cases, seasonal signals are reduced or removed and, in some, time gaps develop during periods of excessive melting which situate the drill site in the ablation zone. Consequently, cross correlations of assumed synchronous events among the cores are invalid, so that time-scales along the same cores differ between authors by factors of over 2. Many so-called climatic signals are imaginary rather than real. By reference to published analyses of cores from the superimposed ice zone on Devon Ice Cap (Koerner, 1970) and Meighen Ice Cap (Koerner and Paterson, 1974), it is shown how melt affects all the normally well-established ice-core proxies and leads to their misinterpretation. Despite these limitations, the cores can give valuable low-resolution records for all or part of the Holocene. They show that the thermal maximum in the circum-polar Arctic occurred in the early Holocene. This maximum, effected negative balances on all the ice caps and removed the smaller ones. Cooler conditions in the second half of the Holocene have caused the regrowth of these same ice caps.


2020 ◽  
pp. 1-22
Author(s):  
Luke Copland ◽  
Denis Lacelle ◽  
David Fisher ◽  
Frances Delaney ◽  
Laura Thomson ◽  
...  

We examine how recent increases in air temperature and precipitation, together with reductions in sea ice extent, may have affected the regional δD–δ18O composition of precipitation. In spring 2014, 80 snow samples were collected from six glaciers and ice caps across the Queen Elizabeth Islands, and in 2009 and 2014, two shallow ice cores were collected from Agassiz Ice Cap and White Glacier, respectively. The snow samples showed average δ18O values from 2013 to 2014 to be approximately 2‰–3‰ higher than those recorded in 1973–1974 in nearby locations, with the ice cores showing similar trends in δ18O values. A zonal average water isotope model was used to help understand the causes of the increased δ18O values, using inputs calibrated for observed changes in temperature, vapour flux, and sea ice extent. Model results indicate that atmospheric temperature changes account for <1‰ of the observed change in δ18O values, and that changes in local water input and precipitation driven by changes in sea ice extent only have an effect in coastal regions. Enhanced meridional vapour flux to the Queen Elizabeth Islands is, therefore, also required to explain the observed increases in δ18O values, with fluxes ∼7% higher today than in the 1970s, consistent with the change in precipitation.


2021 ◽  
Author(s):  
Andrea Fischer ◽  
Pascal Bohleber ◽  
Martin Stocker-Waldhuber

&lt;p&gt;Eastern Alpine Mountain Glaciers are threatened by current climate change, for which they are visible and prominent indicators. This makes them an important part of climate communication pushing our commitment for mitigation efforts. At the same time, this requires the scientific community to thoroughly understand and communicate the ongoing processes.&lt;/p&gt;&lt;p&gt;From a scientific viewpoint, the link between classical in-situ mass balance data and the climate and environmental records potentially preserved in the so-called cold &amp;#8220;miniature ice caps&amp;#8221; sparks novel research perspectives. Summit stake measurements and ice core drillings are both rare, although the comparison of today&amp;#8217;s stake mass balance records with the variance of annual accumulation preserved in ice cores offers an intriguing hub to unravelling past processes.&lt;/p&gt;&lt;p&gt;We implemented summit stake mass balance measurements on two summits in the Austrian Alps, Wei&amp;#223;seespitze (3500 m) in &amp;#214;tztal Alps and Gro&amp;#223;venediger (3600 m) in Hohe Tauern National Park. At Wei&amp;#223;seespitze summit ice cap, two ice cores were drilled recently to bedrock and subsequently micro-radiocarbon dated. A stake network is complemented by a continuous monitoring of point thickness changes and a time lapse cam to monitor patterns of snow cover distribution. An energy balance station offers information on wind, air and ice temperatures and radiation.&lt;/p&gt;&lt;p&gt;The results from the first two years of monitoring at Wei&amp;#223;seespitze indicate that the remaining ice cap of about 10 m thickness will be gone within two decades even under current conditions. In view of present melt rates of about 0.6 m/year, a dated ice core record could eventually shed light on the question if similar conditions as today have occurred earlier in the past 6000 years of glacier cover at the summit. Learning more about (sub)seasonal patterns of accumulation is extremely import for the interpretation of these ice cores, as main accumulation takes place during early and late accumulation season, whereas the accumulation during colder periods is lost by wind erosion. The so far rarely studied miniature ice caps therefore open windows to complementary climate information, different from summer temperatures and winter precipitation which are widely accepted to be represented in total glacier mass balances.&lt;/p&gt;


2002 ◽  
Vol 35 ◽  
pp. 19-24 ◽  
Author(s):  
Roy M. Koerner ◽  
David A. Fisher

AbstractAn early study of the various components of the Greenland, Antarctic and Canadian Arctic ice-cap cores (Koerner, 1989) suggested that during the last interglacial period, the Greenland ice sheet suffered massive retreat and Canadian ice caps melted completely. Since then, modeling has helped support this interpretation (Cuffey and Marshall, 2000). Ice-core records of stable isotopes, melt layering and chemistry from the same Canadian ice cores, and others from the Russian Arctic islands, Svalbard and Greenland are presented as evidence for a more modest, but still substantial, retreat in the early Holocene. the sections representing the first half of the Holocene in many cores have less negative δ18O values (d values) and a higher percentage of melt layers than recently deposited ice, suggesting that temperatures were 1.3–3.5˚C warmer than today. Given that glacier balances are slightly negative today, they must have been substantially more negative during the early-Holocene thermal maximum, leading to retreat of the circumpolar ice caps. Evidence is presented to suggest that, with the exception of Academii Nauk ice cap, the ice in the Russian Arctic islands and Svalbard must have almost disappeared. In the Canadian Arctic, the larger Canadian ice caps retreated but survived. the cooling trend that followed this thermal maximum promoted re-expansion and new growth of most of the ice caps in the Russian Arctic islands and Svalbard.


2021 ◽  
Vol 7 (22) ◽  
pp. eabc1379
Author(s):  
Pengfei Liu ◽  
Jed O. Kaplan ◽  
Loretta J. Mickley ◽  
Yang Li ◽  
Nathan J. Chellman ◽  
...  

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.


Sign in / Sign up

Export Citation Format

Share Document