scholarly journals Glaciated landscapes along Smith Sound, Ellesmere Island, Canada and Greenland

1999 ◽  
Vol 28 ◽  
pp. 40-46 ◽  
Author(s):  
Weston Blake

AbstractBoth the Ellesmere Island and Greenland coasts of Smith Sound, at 78°20' N to 78°50' N, exhibit exceptionally well-sculptured and heavily striated Precambrian bedrock. The glacial features were created by the southward flow of the “Smith Sound Ice Stream”, which overrode Pim Island (550 m), where Smith Sound is > 500 m deep and 40 km wide. The Smith Sound Ice Stream was the drainageway to Baffin Bay for ice derived from the coalescence of the Innuitian and Greenland ice sheets over Kane Basin, the shallowest part (much of it <200m) of the Nares Strait system, in late-Wisconsinan (Weichselian) time. The north-south oriented glacial features along the outermost coasts of Smith Sound contrast markedly with the present-day eastward flow of outlet glaciers from the Prince of Wales Icefield (Ellesmere Island) and the westward flow of outlet glaciers from the Greenland ice sheet (Inglefield Land). The oldest 14C ages on marine shells and lake sediments show that glacier ice had receded from the Ellesmere Island coast of Smith Sound by 9000 14C yr BP. The heads of the three longest fiords, 120-140 km to the west and northwest, did not become ice-free until 450014C yr BP.

2021 ◽  
Author(s):  
Lina Madaj ◽  
Friedrich Lucassen ◽  
Claude Hillaire-Marcel ◽  
Simone A. Kasemann

&lt;p&gt;The re-opening of the Arctic Ocean-Baffin Bay gateway through Nares Strait, following the Last Glacial Maximum, has been partly documented, discussed and revised in the past decades. The Nares Strait opening has led to the inception of the modern fast circulation pattern carrying low-salinity Arctic water towards Baffin Bay and further towards the Labrador Sea. This low-salinity water impacts thermohaline conditions in the North Atlantic, thus the Atlantic Meridional Overturning Circulation. Available land-based and marine records set the complete opening between 9 and 7.5&amp;#160;ka&amp;#160;BP [1-2], although the precise timing and intensification of the southward flowing currents is still open to debate. A recent study of a marine deglacial sedimentary record from Kane Basin, central Nares Strait, adds information about subsequent paleoceanographic conditions in this widened sector of the strait and proposed the complete opening at ~8.3&amp;#160;ka&amp;#160;BP [3].&lt;/p&gt;&lt;p&gt;We present complementary radiogenic strontium, neodymium and lead isotope data of the siliciclastic detrital sediment fraction of this very record [3] further documenting the timing and pattern of Nares Strait opening from a sediment provenance approach. The data permit to distinguish detrital material from northern Greenland and Ellesmere Island, transported to the core location from both sides of Nares Strait. Throughout the Holocene, the evolution of contributions of these two sources hint to the timing of the ice break-up in Kennedy Channel, north of Kane Basin, which led to the complete opening of Nares Strait [3]. The newly established gateway of material transported to the core location from the north via Kennedy Channel is recorded by increased contribution of northern Ellesmere Island detrital sediment input. This shift from a Greenland (Inglefield Land) dominated sediment input to a northern Ellesmere Island dominated sediment input supports the hypothesis of the newly proposed timing of the complete opening of Nares Strait at 8.3&amp;#160;ka&amp;#160;BP [3] and highlights a progressive trend towards modern-like conditions, reached at about 4&amp;#160;ka&amp;#160;BP.&lt;/p&gt;&lt;p&gt;References:&lt;/p&gt;&lt;p&gt;[1] England (1999) Quaternary Science Reviews, 18(3), 421&amp;#8211;456. [2] Jennings et al. (2011) Oceanography, 24(3), 26-41. [3] Georgiadis et al. (2018) Climate of the Past, 14 (12), 1991-2010.&lt;/p&gt;


1992 ◽  
Vol 29 (9) ◽  
pp. 1958-1980 ◽  
Author(s):  
Weston Blake Jr.

Twenty-five radiocarbon age determinations on marine molluscs, basal organic pond sediments, charred remains in archeological sites, and a variety of other materials have allowed the construction of an emergence curve for Cape Herschel, east-central Ellesmere Island (78°35′N, 74°40′W). Only a narrow fringe of land is present between the Prince of Wales Icefield and Smith Sound, yet emergence of the order of 135 m has taken place during the last 8500–8700 radiocarbon years. The highest in situ shells were collected at an elevation of 107.5 m, and ages of 8470 ± 100 BP (GSC-3314) and 8230 ± 70 BP (TO-230) were obtained on this material.The spectacular and fresh-appearing glacial sculpture along both sides of Smith Sound, coupled with the rapid emergence in Holocene time and the fact that the oldest dates on marine shells at the fiord heads to the west are 3000–4000 years younger than those at Cape Herschel, provides convincing evidence that an ice stream filled Smith Sound (> 500 m deep) during the Late Wisconsinan glacial maximum. The Smith Sound Ice Stream drained southward from the Greenland Ice Sheet and the Innuitian Ice Sheet, which were confluent over Kane Basin, and it overrode the top of Pim Island (550 m asl). Massive melt-off of ice must have been occurring at the transition from Pleistocene to Holocene time, and this melting continued until the mid-Holocene, when all investigated outlet glaciers were behind their present positions.


2004 ◽  
Vol 41 (1) ◽  
pp. 39-61 ◽  
Author(s):  
John H England ◽  
Nigel Atkinson ◽  
Arthur S Dyke ◽  
David JA Evans ◽  
Marek Zreda

During the Late Wisconsinan, a precursor of the Prince of Wales Icefield, southern Ellesmere Island, formed a prodigious ice divide of the Innuitian Ice Sheet. Initial buildup occurred after 19 ka BP, when the icefield advanced west (inland) across Makinson Inlet from margins similar to present. Subsequent reversal of flow to the east required ice divide migration to the west onto a plateau that is largely ice-free today. From this divide, a trunk glacier flowed eastward through Makinson Inlet to join the Smith Sound Ice Stream en route to nothern Baffin Bay. Westward flow from this divide filled Baumann Fiord, depositing a granite dispersal train that extends a further 600 km across the archipelago to the polar continental shelf. Deglaciation of most of Makinson Inlet occurred catastrophically at ~9.3 ka BP, forming a calving bay that thinned the Innuitian divide, thereby triggering deglaciation of most of Baumann Fiord by 8.5 ka BP. Ninety 14C dates on Holocene shells and driftwood constrain deglacial isochrones and postglacial emergence curves on opposite sides of the former Innuitian divide. Isobases drawn on the 8 ka BP shoreline rise northwest towards Eureka Sound, the axis of maximum former ice thickness. Ice margins on Ellesmere Island were similar to present from ~50–19 ka BP (spanning marine isotope stages 3 and 2). However, significant regional variation in ice extent during this interval is recorded by ice rafting from the Laurentide Ice Sheet into Baffin Bay. Later buildup of the Innuitian Ice Sheet occurred during the low global sea level that defines the last glacial maximum (18 ka BP). We also suggest that the Innuitian Ice Sheet was influenced by the buttressing and subsequent removal of the Greenland Ice Sheet along eastern Ellesmere Island.


2014 ◽  
Vol 9 ◽  
pp. 123 ◽  
Author(s):  
Robert EA Stewart ◽  
Erik W Born ◽  
Rune Dietz ◽  
Mads Peter Heide-Jørgensen ◽  
Frank Farsø Rigét ◽  
...  

Atlantic walruses (Odobenus rosmarus rosmarus) belonging to the Baffin Bay subpopulation occur year round in the North Water polynya (NOW) between NW Greenland and eastern Ellesmere Island (Canada). They are hunted for subsistence purposes by residents of the Qaanaaq area (NW Greenland) bordering the NOW to the east and by Canadian Inuit at the entrance to Jones Sound in Nunavut. During the open-water period NW Greenland is virtually devoid of walruses which concentrate along eastern and southern Ellesmere Island at this time of the year. To determine the abundance of walruses in the NOW area, aerial surveys were conducted in August of 1999, 2008, and 2009. In July 2009, nine satellite-linked transmitters were deployed in nearby Kane Basin. Surveys on 9 and 20 August 2009 along eastern Ellesmere Island were the most extensive and were augmented with concomitant data on haul-out and at water surface activity from three (1 F, 2 M) of the nine tags that were still functioning. We therefore focus on the 2009 surveys. Walruses were observed on the ice and in water primarily in Buchanan Bay and Princess Marie Bay where the remaining functional tags were located. The Minimum Counted population (MCP) was 571 on 20 August. Adjusting the MCP of walruses on ice for those not hauled out, the estimate of abundance of walruses in the Baffin Bay stock was 1,251(CV=1.00, 95% CI = 1,226) when adjusted by the proportion of tags ‘dry’ at the time of the survey and 1,249 (CV=1.12, 95% CI = 1,370) when adjusted by the average time tags were dry. The surveys did not cover all potential walrus summering habitat along eastern Ellesmere Island and are negatively biased to an unknown degree.


2007 ◽  
Vol 1 (1) ◽  
pp. 41-76 ◽  
Author(s):  
R. Greve ◽  
S. Otsu

Abstract. The north-east Greenland ice stream (NEGIS) was discovered as a large fast-flow feature of the Greenland ice sheet by synthetic aperture radar (SAR) imaginary of the ERS-1 satellite. In this study, the NEGIS is implemented in the dynamic/thermodynamic, large-scale ice-sheet model SICOPOLIS (Simulation Code for POLythermal Ice Sheets). In the first step, we simulate the evolution of the ice sheet on a 10-km grid for the period from 250 ka ago until today, driven by a climatology reconstructed from a combination of present-day observations and GCM results for the past. We assume that the NEGIS area is characterized by enhanced basal sliding compared to the "normal", slowly-flowing areas of the ice sheet, and find that the misfit between simulated and observed ice thicknesses and surface velocities is minimized for a sliding enhancement by the factor three. In the second step, the consequences of the NEGIS, and also of surface-meltwater-induced acceleration of basal sliding, for the possible decay of the Greenland ice sheet in future warming climates are investigated. It is demonstrated that the ice sheet is generally very susceptible to global warming on time-scales of centuries and that surface-meltwater-induced acceleration of basal sliding can speed up the decay significantly, whereas the NEGIS is not likely to dynamically destabilize the ice sheet as a whole.


ARCTIC ◽  
2011 ◽  
Vol 64 (1) ◽  
pp. 45 ◽  
Author(s):  
Marta E. Torres ◽  
Daniela Zima ◽  
Kelly K. Falkner ◽  
Robie W. Macdonald ◽  
Mary O'Brien ◽  
...  

<span style="font-family: 'Times New Roman';">Nares Strait is one of three main passages of the Canadian Archipelago that channel relatively fresh seawater from the Arctic Ocean through Baffin Bay to the Labrador Sea. Oxygen isotopic profiles along the growth axis of bivalve shells, collected live over the 5 – 30 m depth range from the Greenland and Ellesmere Island sides of the strait, were used to reconstruct changes in the hydrography of the region over the past century. The variability in oxygen isotope ratios is mainly attributed to variations in salinity and suggests that the northern end of Nares Strait has been experiencing an increase in freshwater runoff since the mid 1980s. The recent changes are most pronounced at the northern end of the strait and diminish toward the south, a pattern consistent with proximity to the apparently freshening Arctic Ocean source in the north and mixing with Baffin Bay waters as the water progresses southward. This increasing freshwater signal may reflect changes in circulation and ice formation that favor an increased flow of relatively fresh waters from the Arctic Ocean into Nares Strait. </span>


2013 ◽  
Vol 7 (6) ◽  
pp. 1721-1740 ◽  
Author(s):  
S. J. Livingstone ◽  
C. D. Clark ◽  
J. Woodward ◽  
J. Kingslake

Abstract. We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.


2017 ◽  
Author(s):  
Sarah L. Bradley ◽  
Thomas J. Reerink ◽  
Roderik S. W. van de Wal ◽  
Michiel M. Helsen

Abstract. Observational evidence, including offshore moraines and sediment cores confirm that at the Last Glacial maximum (LGM) the Greenland ice sheet (GrIS) grew to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and to the continental shelf break. Given this larger spatial extent and it is close proximity to the neighboring Laurentide (LIS) and Innuitian Ice sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf; or utilized a simplified marine ice parametersiation and therefore did not fully include ice shelf dynamics, and or the sensitivity of the GrIS to this non-local signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 kyr BP to present day), using the ice sheet-ice shelf model, IMAU-ICE and investigated the influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a GIA model. This RSL forcing controlled via changes in the water depth below the developing ice shelves, the spatial and temporal pattern of sub-ice shelf melting, which was parametrised in relation to changes in water depth. In the suite of simulations, the GrIS at the glacial maximums coalesced with the IIS to the north, expanded to the continental shelf break to the south west but remained too restricted to the north east. In terms of an ice-volume equivalent sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 m and −2.59 m to the budget respectively. The estimated lowering of the sea level by the Greenland contribution is considerably more (1.26 m) than most previous studies indicated whereas the contribution to the LIG high stand is lower (0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub surface melt (SSM), which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcing’s, with a uniform response in an all simulations controlled by the surface air temperature (SAT) forcing, derived from ice cores.


2014 ◽  
Vol 8 (2) ◽  
pp. 2043-2118
Author(s):  
T. Hughes ◽  
A. Sargent ◽  
J. Fastook ◽  
K. Purdon ◽  
J. Li ◽  
...  

Abstract. The Jakobshavn Effect is a series of positive feedback mechanisms that was first observed on Jakobshavn Isbrae, which drains the west-central part of the Greenland Ice Sheet and enters Jakobshavn Isfjord at 69°10'. These mechanisms fall into two categories, reductions of ice-bed coupling beneath an ice stream due to surface meltwater reaching the bed, and reductions in ice-shelf buttressing beyond an ice stream due to disintegration of a laterally confined and locally pinned ice shelf. These uncoupling and unbuttressing mechanisms have recently taken place for Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland, respectively. For Byrd Glacier, no surface meltwater reaches the bed. That water is supplied by drainage of two large subglacial lakes where East Antarctic ice converges strongly on Byrd Glacier. Results from modeling both mechanisms are presented here. We find that the Jakobshavn Effect is not active for Byrd Glacier, but is active for Jakobshavn Isbrae, at least for now. Our treatment is holistic in the sense it provides continuity from sheet flow to stream flow to shelf flow. It relies primarily on a force balance, so our results cannot be used to predict long-term behavior of these ice streams. The treatment uses geometrical representations of gravitational and resisting forces that provide a visual understanding of these forces, without involving partial differential equations and continuum mechanics. The Jakobshavn Effect was proposed to facilitate terminations of glaciation cycles during the Quaternary Ice Age by collapsing marine parts of ice sheets. This is unlikely for the Antarctic and Greenland ice sheets, based on our results for Byrd Glacier and Jakobshavn Isbrae, without drastic climate warming in high polar latitudes. Warming would affect other Antarctic ice streams already weakly buttressed or unbuttressed by an ice shelf. Ross Ice Shelf would still protect Byrd Glacier.


1989 ◽  
Vol 26 (12) ◽  
pp. 2578-2590 ◽  
Author(s):  
Donald S. Lemmen

The limit of the last glaciation on Marvin Peninsula, northernmost Ellesmere Island, is recorded by extensive ice-marginal landforms and early Holocene glaciomarine sediments. While glaciers occupied most valleys on the peninsula, other areas remained ice free, as did most of the adjacent fiords. Beyond the ice limit, sparse erratics and degraded meltwater channels within weathered bedrock are evidence of older, more extensive glaciation(s). Shorelines and marine shells 50 m above the limit of the Holocene sea along the north coast relate to these older glacial events.Thirty-four new radiocarbon dates provide a chronology of ice buildup and retreat. Glaciers reached their limit after 23 ka, and locally as late as 11 ka. This was achieved by both expansion of existing glaciers and accumulation on plateau and lowland sites, which are presently ice free. Late Wisconsinan climate was characterized by cold and extreme aridity. Five dates ranging from 11 to 31 ka BP on subfossil bryophytes suggest that ice-free areas were biologically productive throughout the last glaciation. Ice retreat and postglacial emergence had begun by 9.5 ka and was associated with a marked climatic amelioration. The deglacial chronology confirms a pronounced disparity in the timing of ice retreat on the north and south sides of the Grant Land Mountains.


Sign in / Sign up

Export Citation Format

Share Document