scholarly journals Autumn, Winter and Spring Soil Temperatures in Okstindan, Norway

1974 ◽  
Vol 13 (69) ◽  
pp. 521-533
Author(s):  
Charles Harris

Soil temperatures were recorded over periods of several weeks in the years 1909 and 1970 in two sites to a depth of 100 cm. It was found that snow depth was of major importance in the rate of freezing of the soil in winter; where snow cover was less than 5 cm in depth freezing rates were almost double those where snow depth was over 1 m. Snow cover also insulated the soil surface from above-zero air temperatures during spring, and soil thawing commenced from the surface only following the clearance of snow. Similarly, insulation of the soil surface by snow prevented short-term freezing and thawing cycles penetrating the soil, although even where snow cover was absent such short-term cycles were not observed to penetrate the soil to depths in excess of 5 cm. This surficial freezing and thawing of the soil took place more readily in spring than in the autumn. It was concluded that the annual cycle of soil freezing and thawing was the dominant factor in the thermal regime of these soils, short-term freezing cycles affecting only the immediate surface soil layers.

1974 ◽  
Vol 13 (69) ◽  
pp. 521-533 ◽  
Author(s):  
Charles Harris

Soil temperatures were recorded over periods of several weeks in the years 1909 and 1970 in two sites to a depth of 100 cm. It was found that snow depth was of major importance in the rate of freezing of the soil in winter; where snow cover was less than 5 cm in depth freezing rates were almost double those where snow depth was over 1 m. Snow cover also insulated the soil surface from above-zero air temperatures during spring, and soil thawing commenced from the surface only following the clearance of snow. Similarly, insulation of the soil surface by snow prevented short-term freezing and thawing cycles penetrating the soil, although even where snow cover was absent such short-term cycles were not observed to penetrate the soil to depths in excess of 5 cm. This surficial freezing and thawing of the soil took place more readily in spring than in the autumn. It was concluded that the annual cycle of soil freezing and thawing was the dominant factor in the thermal regime of these soils, short-term freezing cycles affecting only the immediate surface soil layers.


2014 ◽  
Vol 7 (6) ◽  
pp. 2831-2857 ◽  
Author(s):  
S. Endrizzi ◽  
S. Gruber ◽  
M. Dall'Amico ◽  
R. Rigon

Abstract. GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.


2013 ◽  
Vol 6 (4) ◽  
pp. 6279-6341 ◽  
Author(s):  
S. Endrizzi ◽  
S. Gruber ◽  
M. Dall'Amico ◽  
R. Rigon

Abstract. GEOtop is a small-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It represents the energy exchange with the atmosphere, considering the radiative and turbulent fluxes, and describes the three-dimensional subsurface water flow. Furthermore, it reproduces the highly non-linear interaction of the water and energy balance during soil freezing and thawing, and describes the temporal evolution of water and energy budgets in the snow cover and their effect on soil temperature. Here, we describe the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally-frozen soils, both in high altitude and latitude regions.


2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


2008 ◽  
Vol 9 (5) ◽  
pp. 936-950 ◽  
Author(s):  
Tushar Sinha ◽  
Keith A. Cherkauer

Abstract Seasonal cycles of freezing and thawing influence surface energy and water cycle fluxes. Specifically, soil frost can lead to the reduction in infiltration and an increase in runoff response, resulting in a greater potential for soil erosion. An increase in the number of soil freeze–thaw cycles may reduce soil compaction, which could affect various hydrologic processes. In this study, the authors test for the presence of significant trends in soil freeze–thaw cycles and soil temperatures at several depths and compare these with other climatic variables including air temperature, snowfall, snow cover, and precipitation. Data for the study were obtained for three research stations located in northern, central, and southern Indiana that have collected soil temperature observations since 1966. After screening for significant autocorrelations, testing for trends is conducted at a significance level of 5% using Mann–Kendall’s test. Observations from 1967 to 2006 indicate that air temperatures during the cold season are increasing at all three locations, but there is no significant change in seasonal and annual average precipitation. At the central and southern Indiana sites, soil temperatures are generally warming under a bare soil surface, with significant reductions in the number of days with soil frost and freeze–thaw cycles for some depths. Meanwhile, 5-cm soils at the northernmost site are experiencing significant decreases in cold season temperatures, as an observed decrease in annual snowfall at the site is counteracting the increase in air temperature. Seasonal mean maximum soil temperatures under grass cover are increasing at the southernmost site; however, at the central site, it appears that seasonal minimum soil temperatures are decreasing and the number of freeze–thaw cycles is increasing.


2015 ◽  
Vol 124 (4) ◽  
pp. 52 ◽  
Author(s):  
A. B. Shmakin ◽  
N. I. Osokin ◽  
A. V. Sosnovsky ◽  
E. P. Zazovskaya ◽  
A. V. Borzenkova

FLORESTA ◽  
2004 ◽  
Vol 34 (2) ◽  
Author(s):  
Leocadio Grodzki ◽  
Ronaldo Viana Soares ◽  
Antonio Carlos Batista ◽  
Paulo Henrique Caramori

O sistema agroflorestal da bracatinga utiliza queima após o corte e retirada da madeira, dando lugar à semeadura de espécies agrícolas. A queima controlada altera a temperatura do ar e do solo. A mudança de refletividade da superfície é mais rápida que dos reflorestamentos próximos. A transformação das folhas e galhos secos em cinza após a queima, faz com que haja mudanças do albedo, alterando o balanço energético. Os resultados mostram temperaturas do ar de 600ºC por 20-40 segundos a 1 cm do solo e de 100 a 300°C a 60 e 160cm do solo, respectivamente, durante 1 minuto. Temperaturas de 100ºC ao nível do solo residiram por mais de 3 minutos. A temperatura do solo não foi afetada a 2,5cm de profundidade. Durante a queima, a temperatura se elevou em 1ºC. O albedo de 0,24 antes da queima, passou para 0,21 logo após a queima. Após 60 dias, o albedo voltou a 0,24 devido a recomposição da vegetação. FIRE EFECTS ON SOME MICROMETEOROLOGICAL VARIABLES IN A BRACATINGA (Mimosa scabrella, Benth.) FOREST, COLOMBO, PR Abstract The bracatinga agriculture-forest systems adopted by farmers consists on burning the residues after wood’s harvesting prior to sowing the crops. This procedure is repeated each 6 to 8 years in the same area. The prescribed burning changes air and soil temperatures. Changes in reflectivity are faster then in the surrounding forest areas. Transforming leaves and branches into ashes after burning changes the albedo of the surface, altering the energetic balance. Results showed air temperatures of 600°C during 20 to 40 seconds, 1cm above the soil surface, and 100 to 300°C at 60 and 160cm above the soil surface, during 1 minute. Temperatures over 100°C on the soil surface were observed for more than 3 minutes. Soil temperature was not affected at 2.5cm depth; during burning, the temperature raised only 1ºC. The surface albedo that was 0,24 before the burning changed to 0,21 after burning and returned to 0.24 sixty days after the burning due to the vegetation regeneration.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 405-414
Author(s):  
Genki I. Matsumoto ◽  
Eiji Fujisawa ◽  
Syojiro Kimura ◽  
Ryoichi Saito ◽  
Tsutomu Takayama ◽  
...  

Soil-covered wastewater treatment systems have progressively been used during this decade both in the rural and urban areas in Japan. In order to evaluate the influences of extremely low air temperatures on the covered soil and sewage temperatures, the pressure of contact aeration tank and the treatment of wastewater, we compared the efficiencies of three types of contact aeration apparatus (sewage surface level, 30, 50, 70 cm from the soil surface; top shape of gravel layer, convex, flat; soil-sewage boundary, contact, separate) being packed with gravels as a contact medium and set in the temperature controlled test laboratory. At extremely low air temperatures, the covered soils and ice columns on the surface soils are important as a heat insulator. Freezing depths of soils were inversely correlated with sewage surface levels. The influences of soil freezing on the pressure of aeration tanks were negligibly small and thus soil freezing does not affect aeration systems. No significant changes in the sewage treatment functions among the three apparatus were found. The soil-covered wastewater treatment systems must be useful in cold districts.


Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 269 ◽  
Author(s):  
KL Bristow

Both the quantity and architecture of a surface mulch affect its performance in modifying the soil microenvironment. In this paper, temperature under two simple mulch architectures is compared and contrasted with that of bare soil in a tropical environment. In mulch treatments the quantities of mulch per unit area were similar, but elements in one treatment were horizontal (forming a 5 cm layer) while in the other they were vertical (forming a 22 cm layer). Temperatures were recorded for several days as the soil dried following a storm which saturated the mulch and surface soil. The bare soil dried more rapidly than that with mulch, so that by the fourth day its hourly maximum surface temperature was 8�C higher, and that at 2 5 cm depth was 3�C higher, than soil temperatures under the mulch. Significant differences in soil temperatures under the two mulch treatments only appeared several days later, as subtle differences in the partitioning of energy by the two mulch canopies became more apparent with drier conditions. By the twelfth day, the maximum surface temperature under the vertical mulch was 7�C higher than that under the horizontal mulch. Minimum soil temperatures were never more than 2.5�C different between the bare and mulched treatments and converged with drying. In both mulch treatments, the mulch elements near the soil surface experienced greater temperature extremes than those at the top of the mulch layer. The range in element temperature was slightly greater in the horizontal mulch treatment than in the vertical mulch treatment, where the element temperatures were more closely tied to air temperatures. The first few days following rain are crucial for seedling establishment in the semi-arid tropics and it appears from this study that mulch architecture is of minor importance during this period.


1980 ◽  
Vol 10 (4) ◽  
pp. 476-482 ◽  
Author(s):  
André P. Plamondon ◽  
Denis C. Ouellet ◽  
Gaston Déry

Soil and air temperatures, and soil water tension were measured at two sites from June 1972 to August 1973 in order to determine the effect of scarification. This study is part of a project concerning yellow birch regeneration. The minimum air temperature at 30 cm height and at the soil surface were, respectively, 0.5 and 1.0 °C higher at the scarified site; on the other hand, the maximum temperature at 30 cm was lower. The soil temperatures during the summer were 2 to 4 °C higher at the scarified site according to the level considered. Soil water tension was much lower in the scarified station between 0 and 15 cm depth, but the effect decreased during the second summer of the study.


Sign in / Sign up

Export Citation Format

Share Document