scholarly journals Glaciological Problems Set by the Control of Dangerous Lakes in Cordillera Blanca, Peru

1977 ◽  
Vol 19 (81) ◽  
pp. 673-674 ◽  
Author(s):  
Louis Lliboutry ◽  
Benjamín Morales Arnao ◽  
André Pautre ◽  
Bernard Schneider

AbstractThe retreat of glaciers since 1927 in Cordillera Blanca has produced dangerous lakes at the front of many glaciers. All the known data, most of them unpublished, are reviewed. The known aluviones are listed, and those of Chavin, Quebrada Los Cedros and Artesoncocha described in full. In these three cases a breach in the front moraine came from big ice falls into the lake. The protective devices made on the outlets are described, as well as the effects of the big earthquake on 31 May 1970. In the case of Laguna Parón, which keeps its level thanks to infiltrations, the fluctuations of the discharge of the springs as related to the level of the lake from 1955 to 1969 are reported. The projects for lowering the level of Laguna Parón and for emptying Safuna Alta are described. The latter partially emptied in fact by piping after the earthquake, allowing a final solution.In front of Laguna Parón there is a huge moraine which turns through 90° in the middle of the valley and with a narrow covered glacier on the top. It has been studied by electrical exploration, and using the displacements of 43 marked boulders on the glacier. Assuming a uniform balance on the glacier tongue and semi-elliptical cross-sections, it has been possible to estimate this balance and the glacier thickness. A great amount of the measured velocity comes from the creep of the moraine itself, which seems to be a kind of rock glacier, probably without interstitial ice. It must have taken all the Holocene to be formed. During its complex history a pro-glacial lake must have formed at some time, the rupture of which explains the crooked form.We explain how preliminary results concerning the internal constitution of the big push moraine at Safuna were obtained in 1967. Cross-sections which were obtained later through electrical and seismic exploration and arduous borings are given. Under the lake Safuna Alta there exists a layer of dead ice which is probably a remnant from an old glacier advance and over which the active glacier slides, but this dead ice does not extend into the push moraine. Since 1950 Safuna Alta has formed, the glacier tongue has lowered by 0.8 m per year on average, and the big push moraine has moved and settled.The annual balance on the glacier tongue was measured in 1968. It increases by 3.9 m of ice per 100 m in altitude. The discharge of ice near the lake and the annual balance further up-valley allow an estimate of the mean annual balance in the accumulation zone (between 4 850 and 6 020 m) at 2.30 m of water per year. Until now no annual precipitation higher than 1 m/year had been measured in Cordillera Blanca, but this Cordillera includes many meso-climates.Eight successive moraines are found at Safuna. They are tentatively correlated with the eight existing between Huaraz and Laguna Llaca. Clapperton’s “group 4" was not formed during the 20th, but during the 17th century. His “group 3" is not from A.D. 1750-1800, but is rather 5000 to 7000 years old, according to the offset of Cordillera Blanca great fault.This contribution is published in full as three papers in Journal of Glaciology, Vol. 18, No. 79.

1977 ◽  
Vol 19 (81) ◽  
pp. 673-674
Author(s):  
Louis Lliboutry ◽  
Benjamín Morales Arnao ◽  
André Pautre ◽  
Bernard Schneider

Abstract The retreat of glaciers since 1927 in Cordillera Blanca has produced dangerous lakes at the front of many glaciers. All the known data, most of them unpublished, are reviewed. The known aluviones are listed, and those of Chavin, Quebrada Los Cedros and Artesoncocha described in full. In these three cases a breach in the front moraine came from big ice falls into the lake. The protective devices made on the outlets are described, as well as the effects of the big earthquake on 31 May 1970. In the case of Laguna Parón, which keeps its level thanks to infiltrations, the fluctuations of the discharge of the springs as related to the level of the lake from 1955 to 1969 are reported. The projects for lowering the level of Laguna Parón and for emptying Safuna Alta are described. The latter partially emptied in fact by piping after the earthquake, allowing a final solution. In front of Laguna Parón there is a huge moraine which turns through 90° in the middle of the valley and with a narrow covered glacier on the top. It has been studied by electrical exploration, and using the displacements of 43 marked boulders on the glacier. Assuming a uniform balance on the glacier tongue and semi-elliptical cross-sections, it has been possible to estimate this balance and the glacier thickness. A great amount of the measured velocity comes from the creep of the moraine itself, which seems to be a kind of rock glacier, probably without interstitial ice. It must have taken all the Holocene to be formed. During its complex history a pro-glacial lake must have formed at some time, the rupture of which explains the crooked form. We explain how preliminary results concerning the internal constitution of the big push moraine at Safuna were obtained in 1967. Cross-sections which were obtained later through electrical and seismic exploration and arduous borings are given. Under the lake Safuna Alta there exists a layer of dead ice which is probably a remnant from an old glacier advance and over which the active glacier slides, but this dead ice does not extend into the push moraine. Since 1950 Safuna Alta has formed, the glacier tongue has lowered by 0.8 m per year on average, and the big push moraine has moved and settled. The annual balance on the glacier tongue was measured in 1968. It increases by 3.9 m of ice per 100 m in altitude. The discharge of ice near the lake and the annual balance further up-valley allow an estimate of the mean annual balance in the accumulation zone (between 4 850 and 6 020 m) at 2.30 m of water per year. Until now no annual precipitation higher than 1 m/year had been measured in Cordillera Blanca, but this Cordillera includes many meso-climates. Eight successive moraines are found at Safuna. They are tentatively correlated with the eight existing between Huaraz and Laguna Llaca. Clapperton’s “group 4" was not formed during the 20th, but during the 17th century. His “group 3" is not from A.D. 1750-1800, but is rather 5000 to 7000 years old, according to the offset of Cordillera Blanca great fault. This contribution is published in full as three papers in Journal of Glaciology, Vol. 18, No. 79.


1977 ◽  
Vol 18 (79) ◽  
pp. 275-290 ◽  
Author(s):  
Louis Lliboutry ◽  
Benjamín Morales Arnao ◽  
Bernard Schneider

AbstractWe explain how preliminary results concerning the internal constitution of the big push moraine at Safuna were obtained in 1967. Cross-sections which were obtained later through electrical and seismic exploration and arduous borings are given. Under the lake Safuna Alta there exists a layer of dead ice which is probably a remnant from an old glacier advance and over which the active glacier slides, but this dead ice does not extend into the push moraine. Since 1950 Safuna Alta has formed, the glacier tongue has lowered by 0.8 m per year on average, and the big push moraine has moved and settled.The annual balance on the glacier tongue was measured in 1968. It increases by 3.9 m of ice per 100 m in altitude. The discharge of ice near the lake and the annual balance further up-valley allow an estimate of the mean annual balance in the accumulation zone (between 4850 and 6020 m) at 2.30 m of water per year. Until now no annual precipitation higher than 1 m/year had been measured in Cordillera Blanca, but this Cordillera includes many meso-climates.Eight successive moraines are found at Safuna. They are tentatively correlated with the eight existing between Huaraz and Laguna Llaca. Clapperton's (1972) “group 4” was not formed during the 20th, but during the 17th century. His “group 3” is not from A.D. 1750-1800, but is rather 5 000 to 7 000 years old, according to the offset of Cordillera Blanca great fault.


1977 ◽  
Vol 18 (79) ◽  
pp. 275-290 ◽  
Author(s):  
Louis Lliboutry ◽  
Benjamín Morales Arnao ◽  
Bernard Schneider

AbstractWe explain how preliminary results concerning the internal constitution of the big push moraine at Safuna were obtained in 1967. Cross-sections which were obtained later through electrical and seismic exploration and arduous borings are given. Under the lake Safuna Alta there exists a layer of dead ice which is probably a remnant from an old glacier advance and over which the active glacier slides, but this dead ice does not extend into the push moraine. Since 1950 Safuna Alta has formed, the glacier tongue has lowered by 0.8 m per year on average, and the big push moraine has moved and settled.The annual balance on the glacier tongue was measured in 1968. It increases by 3.9 m of ice per 100 m in altitude. The discharge of ice near the lake and the annual balance further up-valley allow an estimate of the mean annual balance in the accumulation zone (between 4850 and 6020 m) at 2.30 m of water per year. Until now no annual precipitation higher than 1 m/year had been measured in Cordillera Blanca, but this Cordillera includes many meso-climates.Eight successive moraines are found at Safuna. They are tentatively correlated with the eight existing between Huaraz and Laguna Llaca. Clapperton's (1972) “group 4” was not formed during the 20th, but during the 17th century. His “group 3” is not from A.D. 1750-1800, but is rather 5 000 to 7 000 years old, according to the offset of Cordillera Blanca great fault.


1977 ◽  
Vol 18 (79) ◽  
pp. 255-274 ◽  
Author(s):  
Louis Lliboutry

AbstractIn front of Laguna Parón there is a huge moraine which turns through 90° in the middle of the valley and with a narrow covered glacier on the top. It has been studied by electrical exploration, and using the displacements of 43 marked boulders on the glacier. Assuming a uniform balance on the glacier tongue and semi-elliptical cross-sections, it has been possible to estimate this balance and the glacier thickness. A great amount of the measured velocity comes from the creep of the moraine itself, which seems 10 be a kind of rock glacier, probably without interstitial ire. It must have taken all the Holocene to be formed. During its complex history a proglacial lake must have formed at some time, the rupture of which explains the crooked form.


2019 ◽  
Vol 45 (4) ◽  
Author(s):  
Barbora Vojáčková ◽  
Jan Tippner ◽  
Petr Horáček ◽  
Luděk Praus ◽  
Václav Sebera ◽  
...  

Failure of a tree can be caused by a stem breakage, tree uprooting, or branch failure. While the pulling test is used for assessing the first two cases, there is no device-supported method to assess branch failure. A combination of the optical technique, pulling test, and deflection curve analysis could provide a device-supported tool for this kind of assessment. The aim of the work was to perform a structural analysis of branch response to static mechanical loading. The analyses were carried out by finite element simulations in ANSYS using beam tapered elements of elliptical cross-sections. The numerical analyses were verified by the pulling test combined with a sophisticated optical assessment of deflection evaluation. The Probabilistic Design System was used to find the parameters that influence branch mechanical response to loading considering the use of cantilever beam deflection for stability analysis. The difference in the branch’s deflection between the simulation and the experiment is 0.5% to 26%. The high variability may be explained by the variable modulus of the elasticity of branches. The finite element (FE) sensitivity analysis showed a higher significance of geometry parameters (diameter, length, tapering, elliptical cross-section) than material properties (elastic moduli). The anchorage rotation was found to be significant, implying that this parameter may affect the outcome in mechanical analysis of branch behavior. The branch anchorage can influence the deflection of the whole branch, which should be considered in stability assessment.


1952 ◽  
Vol 19 (1) ◽  
pp. 37-48
Author(s):  
R. A. Clark ◽  
T. I. Gilroy ◽  
E. Reissner

Abstract This paper is concerned with the application of the theory of thin shells to several problems for toroidal shells with elliptical cross section. These problems are as follows: (a) Closed shell subjected to uniform normal wall pressure. (b) Open shell subjected to end bending moments. (c) Combination of the results for the first and second problems in such a way as to obtain results for the stresses and deformations in Bourdon tubes. In all three problems the distribution of stresses is axially symmetric but only in the first problem are the displacements axially symmetric. The magnitude of stresses and deformations for given loads depends in all three problems on the magnitude of the two parameters bc/ah and b/c where b and c are the semiaxes of the elliptical section, a is the distance of the center of the section from the axis of revolution, and h is the thickness of the wall of the shell. For sufficiently small values of bc/ah trigonometric series solutions are obtained. For sufficiently large values of bc/ah asymptotic solutions are obtained. Numerical results are given for various quantities of practical interest as a function of bc/ah for the values 2, 1, 1/2, 1/4 of the semiaxes ratio b/c. It is suggested that the analysis be extended to still smaller values of b/c and to cross sections other than elliptical.


Author(s):  
Xi Zhang ◽  
Wenyuan Wu ◽  
Yanchun Gong ◽  
Suhong He ◽  
Fangping Wu ◽  
...  

Abstract The nonlocal effects of dimers consisted of two cylinders are studied, whose cross section is elliptical. Importantly, the results with dimers whose cross section is circular are compared. For comparison, the curvature of the ellipse is set the same with the circle, and four different geometries are considered. The electric field enhancement at the gap center and the absorption spectrum of the dimers are calculated. For the second geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the first geometry, the frequencies corresponding to the peaks are totally different. Similarly, for the fourth geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the third geometry, the disciplines of the peak values change as radius of curvature increases are totally different.


2020 ◽  
Vol 66 (4) ◽  
pp. 1051-1051
Author(s):  
Marco Magliulo ◽  
Jakub Lengiewicz ◽  
Andreas Zilian ◽  
Lars A. A. Beex

The article “Non-localised contact between beams with circular and elliptical cross-sections”, written by “Marco Magliulo, Jakub Lengiewicz, Andreas Zilian and Lars A. A. Beex”, was originally published Online First without open access. After publication in volume 65, issue 5, page 1247–1266 the authors decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to ©   The Author(s) 2020


Sign in / Sign up

Export Citation Format

Share Document