Numerical Analysis of Branch Mechanical Response to Loading

2019 ◽  
Vol 45 (4) ◽  
Author(s):  
Barbora Vojáčková ◽  
Jan Tippner ◽  
Petr Horáček ◽  
Luděk Praus ◽  
Václav Sebera ◽  
...  

Failure of a tree can be caused by a stem breakage, tree uprooting, or branch failure. While the pulling test is used for assessing the first two cases, there is no device-supported method to assess branch failure. A combination of the optical technique, pulling test, and deflection curve analysis could provide a device-supported tool for this kind of assessment. The aim of the work was to perform a structural analysis of branch response to static mechanical loading. The analyses were carried out by finite element simulations in ANSYS using beam tapered elements of elliptical cross-sections. The numerical analyses were verified by the pulling test combined with a sophisticated optical assessment of deflection evaluation. The Probabilistic Design System was used to find the parameters that influence branch mechanical response to loading considering the use of cantilever beam deflection for stability analysis. The difference in the branch’s deflection between the simulation and the experiment is 0.5% to 26%. The high variability may be explained by the variable modulus of the elasticity of branches. The finite element (FE) sensitivity analysis showed a higher significance of geometry parameters (diameter, length, tapering, elliptical cross-section) than material properties (elastic moduli). The anchorage rotation was found to be significant, implying that this parameter may affect the outcome in mechanical analysis of branch behavior. The branch anchorage can influence the deflection of the whole branch, which should be considered in stability assessment.

Prosthesis ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 173-180
Author(s):  
Nathália de Carvalho Ramos ◽  
Gabriela Freitas Ramos ◽  
Marcela Moreira Penteado ◽  
Renata Marques de Melo ◽  
Alexandre Luiz Souto Borges ◽  
...  

Different all-ceramic crown designs are available to perform indirect restoration; however, the mechanical response of each model should still be elucidated. The study aims to evaluate the stress distribution in three different zirconia crown designs using finite element analysis. Different three-dimensional molar crowns were simulated: conventional bilayer zirconia covered with porcelain, a monolithic full-contour zirconia crown, and the cutback modified zirconia crown with porcelain veneered buccal face. The models were imported to the computer-aided engineering (CAE) software. Tetrahedral elements were used to form the mesh and the mechanical properties were assumed as isotropic, linear and homogeneous materials. The contacts were considered ideal. For the static structural mechanical analysis, 100 N occlusal load was applied and the bone tissue was fixed. Maximum principal stress showed that the stress pattern was different for the three crown designs, and the traditional bilayer model showed higher stress magnitude comparing to the other models. However, grayscale stress maps showed homogeneous stress distribution for all models. The all-ceramic crown designs affect the stress distribution, and the cutback porcelain-veneered zirconia crown can be a viable alternative to adequate function and esthetic when the monolithic zirconia crown cannot be indicated.


1999 ◽  
Vol 122 (1) ◽  
pp. 44-50 ◽  
Author(s):  
John R. Cotton ◽  
J. Wallace Grant

This paper describes the development of a methodology for performing a mechanical analysis of hair cell ciliary bundles. The cilia were modeled as shear deformable beams, and interconnections were modeled as two-force members. These models were incorporated into software, which performs a finite element analysis of a user-defined bundle. The algorithm incorporates aspects of the bundle such as geometric realignment and buckling of compressed side links. A sample bundle is introduced and results of modeling it are presented. [S0148-0731(00)00801-3]


Author(s):  
AV Lopatin ◽  
EV Morozov ◽  
AV Shatov

An approach to the finite element study of the buckling and dynamic behaviour of composite lattice cylindrical shells with elliptical cross sections is presented in this paper. The lattice shells are modelled as three-dimensional frame structures composed of curvilinear ribs using beam finite elements. A specialised algorithm is developed to generate the finite element model of the lattice shells based on multiple use of the repeating unit cell of the composite lattice structure. Using this model, the buckling behaviour of the shells subjected to axial loading and transverse bending are investigated. Fundamental frequencies of axial and transverse vibrations of the shells with a massive rigid disk attached to their ends are determined based on the modelling approach proposed in this work. The effects of parameters of the lattice structure on the values of critical buckling loads, buckling and vibration mode shapes, and the fundamental frequencies are examined using parametric analyses. Based on the computations, the angles of orientation of helical ribs delivering maximum critical loads and fundamental frequencies are identified. The results of this study can be applied to the design of the composite tubular bodies of spacecraft made in the form of cylindrical lattice shells with elliptical cross sections.


2014 ◽  
Vol 611-612 ◽  
pp. 273-279 ◽  
Author(s):  
Ismet Baran ◽  
Jesper Hattel ◽  
Remko Akkerman

In this study, a thermo-mechanical finite element model is developed to predict the spring-in of an industrially pultruded L-shaped profile made of glass/polyester composite. The resin curing kinetics are obtained from the differential scanning calorimetry (DSC) experiments. The development of the resin modulus is derived using the dynamic mechanical analysis (DMA) tests and the effective mechanical properties of the processing composite are calculated using a micromechanical model. The temperature and degree of cure distributions are obtained in a three dimensional (3D) thermo-chemical anlaysis using the finite element method (FEM). The process induced distortions are then calculated using these distributions in a 2D quasi-static mechanical analysis in which generalized plane strain elements are utilized. The predicted spring-in pattern at the end of the process is found to agree quite well with the one observed for the real pultruded parts in a commercial pultrusion company. In addition, the effects of the pulling speed and the part thickness on the spring-in formations are investigated using the proposed numerical simulation tool. It is found that the magnitude of the spring-in increases with an increase in the pulling speed and part thickness.


Author(s):  
Dheeraj Kumar Sharma ◽  
Mainak Bandyopadhyay ◽  
Jaydeep Joshi ◽  
Arun K Chakraborty

Ceramic vacuum feedthroughs are an inevitable requirement for any vacuum system which requires electrical feedlines to be inserted into the vacuum environment. These feedthroughs consist of metal-ceramic-metal transition and, therefore, require the brazing process as a joining technique. This process allows joining two base materials, i.e., Alumina and Kovar, for this case, which manifests different thermo-mechanical response. The difference between the coefficient of thermal expansion (CTE) of these materials causes the development of residual stresses during the cooling phase of the brazing process. Such residual stresses, if not addressed properly, can lead to the failure in the brazed joint even before the design limits. The purpose of this study is to assess these stresses by performing the thermo-mechanical analysis of the brazing process of ceramic-metal assembly through finite element analysis (FEA) technique. This study includes the assessment of non-linear behavior (due to temperature-dependent material properties) of Alumina and Kovar assembly. Further, X-ray diffraction (XRD) based residual stress measurement technique has been utilized to validate the FEA results. The paper shall present the FEA methodology (model, boundary condition, and results) followed by the experimental results and their comparison.


2020 ◽  
Vol 20 (4) ◽  
pp. 799-813
Author(s):  
Joël Chaskalovic ◽  
Franck Assous

AbstractThe aim of this paper is to provide a new perspective on finite element accuracy. Starting from a geometrical reading of the Bramble–Hilbert lemma, we recall the two probabilistic laws we got in previous works that estimate the relative accuracy, considered as a random variable, between two finite elements {P_{k}} and {P_{m}} ({k<m}). Then we analyze the asymptotic relation between these two probabilistic laws when the difference {m-k} goes to infinity. New insights which qualify the relative accuracy in the case of high order finite elements are also obtained.


Sign in / Sign up

Export Citation Format

Share Document