scholarly journals Proposition of a net-like model of snow

1993 ◽  
Vol 18 ◽  
pp. 72-78
Author(s):  
Zempachi Watanabe

Thin-section photographs show that snow consists of lumpy parts and connecting branches. The model proposed here agrees with this real state. This new model is derived from four packing forms of isometric spheres by shrinking the original spheres while maintaining and connecting points of contact as a column. The texture of the model can be varied by setting the packing form, the shrinking ratio and the thickness of connecting branches. When the density and strength of the material of the model are set to the values of polycrystalline ice, the model density and tensile strength agree with published data for dry compacted snow.

1993 ◽  
Vol 18 ◽  
pp. 72-78 ◽  
Author(s):  
Zempachi Watanabe

Thin-section photographs show that snow consists of lumpy parts and connecting branches. The model proposed here agrees with this real state. This new model is derived from four packing forms of isometric spheres by shrinking the original spheres while maintaining and connecting points of contact as a column. The texture of the model can be varied by setting the packing form, the shrinking ratio and the thickness of connecting branches. When the density and strength of the material of the model are set to the values of polycrystalline ice, the model density and tensile strength agree with published data for dry compacted snow.


2008 ◽  
Vol 74 (3) ◽  
pp. 391-429 ◽  
Author(s):  
G. HERDRICH ◽  
D. PETKOW

AbstractThe development of the inductively driven plasma wind tunnel PWK3, which enables the electrodeless generation of high-enthalpy plasmas for the development of heat shield materials required for space vehicles performing entry manoeuvres in the atmospheres of Venus, Earth and Mars, is described. The facility with its modular inductive plasma generators allows operation with gases such as carbon dioxide, air, oxygen and nitrogen and was qualified for thermal plasma powers up to 60 kW. Previously developed models for determining plasma properties and plasma source related characteristics enable a maximum plasma power in combination with long operational periods using different operational gases and gas mixtures. This is achieved by an optimization using the optimum operational frequency, a minimization of field losses using very thin plasma tube wall thicknesses and the successful application of MHD effects. Based on the solved cylinder problem for ICPs, a one-dimensional model for radial Lorentz forces and magnetic pressure has been developed. Here, a synthesis of previously published data and works is made where the new algebraic model for the calculation of Lorentz forces and magnetic pressures in an ICP was used and applied to experimental data. In addition, results from the model using the experimental data are shown to be consistent and, in addition, a comparison with a simpler model based on the well-known exponential approach for ICPs showed that the simpler model is covered without fail by the new model. The new model also states that there is a maximum of the Lorentz forces over the damping parameter d/δ (plasma diameter divided by skin depth) which almost corresponds with the position of the maximum plasma power of the cylindric model for ICPs. For the magnetic pressure the position of the maximum pressure is identical to the value for d/δ for the maximum plasma power.


2018 ◽  
Vol 5 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Yanyu Zhang ◽  
Dongdong Li ◽  
Xiaofei Sun ◽  
Zhaoyao Song ◽  
Dayou Shi ◽  
...  

1979 ◽  
Vol 22 (86) ◽  
pp. 165-169 ◽  
Author(s):  
Masuyoshi Matsuda

AbstractTwo new methods have been devised for measurement of crystallographic lattice orientations of individual crystals in polycrystalline ice. The first uses edge-length ratios of etch pits. The second uses a combination of optical measurement on a thin section and etch-pit technique. Although the second method does not work for crystals with theirc-axis oriented parallel to the thin section, it is much simpler and more practical than the first method. When used on polycrystalline glacier ice, this method gave the threea-axes orientations as well asc-axis orientation for each crystal with an accuracy of 5°.


2005 ◽  
Vol 143 (4) ◽  
pp. 293-298 ◽  
Author(s):  
N. HOLST

Simple models that can forecast yield loss from weed seedling density at crop emergence are useful tools for both research and practice. In 1985 Cousens presented the rectangular hyperbolic curve as a solution to this problem for the one-weed species case (Cousens 1985a). To address the multi-weed species case, the present theoretical paper investigates two published models and develops a third model, termed ‘recursive density equivalents’. The models were analysed and evaluated based on their biological rationale and using already published data. The earlier models were both found to rely on biologically unrealistic assumptions. The new model avoided additional assumptions, providing a neutral method of summarizing the Cousens curves for many species. Recursive density equivalents were found to be additive in a more intuitive fashion than the ‘density equivalents’ introduced earlier. An over-estimation bias was found to be inherent in the earlier density equivalents model, increasing with species richness. The new model corrected for this bias when checked against one year's field data but for another year, both models over-estimated markedly. All three models were found to be too simple to accommodate all possible modes of intra- and inter-specific competition, yet the new model is an improvement, as it agrees better with the biological principles of crop-weed competition.


Author(s):  
M. N. Meiirbekov ◽  
◽  
M. B. Ismailov ◽  

The paper presents published data on the effect of rubber elastomers on the strength properties of epoxy resin (ES) and carbon fiber. The introduction of 10% rubbers into ES ED-20 leads to an increase in compressive strength by 50%, tensile strength by 51%, impact strength by 133% and elongation by 128%. The optimal content of rubber with carboxyl groups for the OLDEN mixture was 10-12.5%, while the increase in compressive strength was 48%, impact strength - 73% and elongation - 187%. For DER 331 resin, the study was conducted with two hardeners Piperidine and DETA. The best results for Piperidine hardener were obtained on rubber with hydroxyl groups, with its optimal content of 2.5%, impact strength increased by 170%. For the hardener DETA, the best results were obtained on rubber with carboxyl groups at its optimal content of 10%, the increase in impact strength was 66%. When modifying carbon fiber with rubbers, it leads to a significant increase in the yield strength in tension by 42%, the modulus of elasticity in bending by 63%, and with a slight loss of impact strength.


2001 ◽  
Vol 29 (3) ◽  
pp. 171-185 ◽  
Author(s):  
W. V. Mars

Abstract This paper describes a new model for predicting multiaxial fatigue crack initiation in rubber. The work is motivated by a need to predict crack initiation life in tires, based on strain histories obtained via finite element analysis. The new model avoids the need to explicitly include cracks in the finite element model, and applies when the cracks are small compared to the strain gradient. The model links the far-field strain state to the energy release rate of an assumed intrinsic flaw. This is accomplished through a new parameter, the cracking energy density. The cracking energy density is the portion of the total elastic strain energy density that is available to be released on a given material plane. The model includes an algorithm to select the material plane which minimizes the life prediction for a given strain history. The consequences of the theory for simple strain histories are presented, as well as predictions for more complicated histories. The theory is compared with published data, and with new results from recent combined axial/torsion fatigue experiments.


1983 ◽  
Vol 4 ◽  
pp. 305
Author(s):  
E. M. Schulson ◽  
J. H. Currier

Structure/property relationships, while well-researched in metallic and in some ceramic materials, have been essentially ignored 1n studies on the mechanical properties of ice. To rectify this situation, experiments have been designed and have been underway for the past two years to investigate one mechanical property, i.e. tensile strength, and the effect of one structural feature, i.e. grain size, on this property. A clear relationship has been established, and is reported here. Other work is in progress and will also be reported in due course. Equiaxed and randomly oriented aggregates of freshwater ice, of grain size (as seen in two-dimensional sections) varying from 1.0 to 7.3 mm, were prepared in the form of large cylinders (91 mm diameter × 231 mm length). The aggregates were deformed to fracture under uniaxial tension, using a specially designed ball-joint and yoke assembly to ensure axial loading. Data were obtained at -10 ±0.2°C (i.e. at 96% of the melting point) at a strain-rate of 10−6 s−1. Figure 1 shows that the tensile strength decreases with increasing grain size, from 1.25 MPa for d = 1 mm to 0.80 MPa for d = 7 mm. Moreover, this figure illustrates that the data are highly reproducible; i.e. that strength is reproducible to within ±5% for a given grain size over the complete range. Fig. 1. Graph showing the decrease in the tensile strength of ice with increasing grain size. Concerning the functional relationship between tensile strength of and grain size, analysis shows that the following equation is well obeyed: Where σj is 0.6 MPa and k is 0.02 MPa m½ at -10°C and 10−6 s−1. This point is illustrated in Figure 2. Fig. 2. Hall-Petch plot showing the relationship between the tensile strength and the grain size of the ice. The d−½ character of this relationship, which is of the classical Hall-Petch form observed frequently in metallic materials, indicates that the tensile strength of ice is controlled by some process involving stress concentration, possibly the propagation of microcracks nucleated by the interactions of dislocations or the propagation of pre-existing defects. Of these, the former is the more probable. The reason is that processes involving dislocation motion, when expressed by the difference of σf – σi, are expected to increase linearly with increasing d−½, whereas processes involving the propagation of pre-existing defects predict a linear relationship between σf and d−½ which extrapolates through the origin. The former behavior is the one observed. It is thus concluded: (i) that the tensile strength of equiaxed and randomly oriented freshwater ice, when deformed slowly at -10°C, decreases with increasing grain size, (ii) that the functional relationship between tensile strength σf and grain size d is σf = σj + kd−½, where σj and k are materials parameters, and (iii) that the tensile strength of polycrystalline ice is controlled by the propagation in a brittle manner of microcracks nucleated by dislocation interactions. Acknowledgement This work was funded by the US Army Research Office, Contract No. DAA G-29-80-C-0064.


Sign in / Sign up

Export Citation Format

Share Document