scholarly journals UJI KETAHANAN TIGA VARIETAS TOMAT (SOLANUM LYCOPERSICUM L.) TERHADAP SERANGAN CMV (CUCUMBER MOSAIC VIRUS) DENGAN METODE DAS-ELISA

2017 ◽  
Vol 1 (2) ◽  
pp. 101
Author(s):  
Lia Agturani Tudaryati ◽  
Febi Nurilmala ◽  
Krisna Dwiharniati

Endurance Test Three Tomato Variety (Solanum lycopersicum L.) Against Attacks CMV (Cucumber Mosaic Virus) DAS-ELISA Method          Tomato plantation intensification can be done by controlling nuisance organism plant causes disease in tomato, such as CMV. CMV can be transmitted mechanically, and therefore testing of tomato varieties resistance to CMV can be performed with CMV isolates infect mechanically to healthy tomato plants (variety Marta F1, San Marino, and Viccario). CMV isolates derived from two sources, namely a positive tomato plants attacked by CMV (plant sap) and the positive control CMV AGDIA producers commonly used as a positive control test DAS-ELISA (Double Antibody Sandwich-Enzyme Linked immunosorbent assay). This study aims to test three varieties of tomato resistance against CMV attacks. Research conducted in the screen house and laboratory virology Central Agricultural Quarantine Standards Test. Identification of CMV infection was done by observing the incubation period, symptoms appeared, and continued with DAS-ELISA test. Structured treatment completely randomized design (CRD) with 6 replications. Data processed with fingerprint analysis and continued with various multiple Duncan test at 5% level test. The results showed the disease symptoms appeared only on the varieties of San Marino from CMV infected plant sap. Symptoms caused a reduction of leaf rolling and leaf lamina 8-10 day incubation period and symptoms of stunted stems with 14-28 day incubation period, the San Marino CMV causes the reduction of plant height by 33%. Sensitivity of tomato varieties against CMV San Marino sap from plants was quantitatively evidenced by positive results on the DAS-ELISA test. Meanwhile, F1 and Marta varieties resistant to Viccario CMV infection sap from plants and the positive control CMV AGDIA producers. Keywords : Tomato (Solanum Lycopersicum l.), Cucumber Mosaic Virus, DAS-ELISA method ABSTRAK                 Intensifikasi perkebunan tomat dapat dilakukan dengan mengendalikan organisme pengganggu tanaman (OPT) penyebab penyakit pada tomat, seperti CMV. CMV dapat ditularkan secara mekanis, oleh karena itu pengujian ketahanan varietas tomat terhadap CMV dapat dilakukan dengan menularkan isolat CMV secara mekanik kepada tanaman tomat sehat (varietas Marta F1, San Marino, dan Viccario). Isolat CMV berasal dari dua sumber, yaitu tanaman tomat yang positif terserang CMV (sap tanaman) dan kontrol positif CMV produsen AGDIA yang biasa digunakan sebagai kontrol positif pengujian DAS-ELISA (Double Antibody Sandwich-Enzyme Linked Immunosorbent assay). Penelitian ini bertujuan untuk menguji ketahanan tiga varietas tomat terhadap serangan CMV. Penelitian dilaksanakan di screen house dan laboratorium virologi Balai Besar Uji Standar Karantina Pertanian pada bulan Januari sampai April 2008. Identifikasi hasil penularan CMV dilakukan dengan mengamati periode inkubasi, gejala yang muncul, dan dilanjutkan dengan pengujian DAS-ELISA. Perlakuan disusun dengan rancangan acak lengkap (RAL) dengan 6 ulangan. Data diolah dengan analisis sidik ragam dan dilanjutkan dengan uji berganda Duncan pada taraf uji 5%. Hasil penelitian menunjukkan gejala penyakit hanya muncul pada varietas San Marino yang ditulari CMV asal sap tanaman. Gejala yang ditimbulkan berupa daun menggulung dan reduksi lamina daun dengan masa inkubasi 8-10 hari, serta gejala batang kerdil dengan masa inkubasi 14-28 hari, CMV pada San Marino menyebabkan reduksi tinggi tanaman sebesar 33%. Kesensitifan tomat varietas San Marino terhadap CMV asal sap tanaman secara kuantitatif dibuktikan dengan hasil yang positif pada pengujian DAS-ELISA. Sedangkan, varietas Marta F1 dan Viccario tahan terhadap penularan CMV asal sap tanaman maupun kontrol positif CMV produsen AGDIA.Kata kunci : Tomat (Solanum lycopersicum  L.), Cucumber Mosaic Virus, metode DAS-ELISA

2020 ◽  
Vol 11 (2) ◽  
pp. 377-390
Author(s):  
Ramiro Hernández Santiago ◽  
Mateo Vargas Hernández ◽  
Erika Janet Zamora Macorra

Se realizaron aplicaciones de los inductores de resistencia: Messenger gold®, Virus Stop®, Actigard®, Virablock®, Kendal®, fosfito de potasio, Stymulus® Maxx, Bacillus subtilis y MC Cream® en el año 2018, de forma individual y combinados en secuencias, para evaluar su efecto sobre la concentración viral (densidad óptica), crecimiento, longitud de raíz, severidad, peso seco total, número y peso de frutos en el cultivo de jitomate (Solanum lycopersicum L.) infectado con Tobacco mosaic virus (TMV). La secuencia de los inductores Messenger gold®+ Messenger gold®+ MC Cream® + MC Cream® redujeron la concentración de TMV a los 38 días después de la inoculación, determinada mediante DAS-ELISA. La aspersión de Virablock® obtuvo la mayor altura promedio. Las plantas tratadas con la secuencia Virus Stop® + Virus Stop® + fosfito de potasio + fosfito de potasio obtuvieron la menor severidad promedio. Las plantas asperjadas con Messenger gold® + Messenger gold® + MC Cream® + MC Cream® registraron la mayor longitud de raíz, mayor peso seco total y el segundo mayor número y peso promedio de frutos que no mostraron síntomas de TMV en frutos.


Author(s):  
Kwasi Dzola Ayisah ◽  
Koffi Simiti ◽  
Mawuli Kossivi Aziadekey

In December 2015, wilt symptoms on tomato plants (Solanum lycopersicum L.) were observed on vegetable growing perimeters in Sotouboua district in Togo. The disease, manifested by wilting of the youngest leaves followed by wilting and total desiccation of plants who eventually dy, leading to losses of up to 100%, is similar to bacterial wilt. The aim of this study, was to determine the pathogen responsible for the observed symptoms. For this purpose, phytosanitary surveys were carried out on tomato plots in Sotouboua distric, in 2018. During the surveys, Tomato plants infected by wilt and the plots soil samples, were collected on CECODRI project and farmers’ plots in the district. Soil samples were analyzed for the detection of nematodes while, tomato leaves, stems and roots were directly observed under binocular loupe and after incubation in Petri dishes containing filter paper moistened with distilled water to encourage sporulation of phytopathogenic fungi. Infected tomato stems and roots were analyzed by stem-streaming and DAS-ELISA tests using Agdia inc. Ralstonia solanacearum Patho Screen Kit to detect R. solanacearum. The results of the phytosanitary surveys showed that the wilt prevalence was 100% in Sotouboua district with incidence rates of up to 100%. Analysis of diseased samples, using stem-streaming and DAS-ELISA tests, revealed that 85.11% of diseased plants were infected by R. solanacearum. No nematodes were identified in the roots of the infected plants, but in soil samples only a few nematodes were counted. No fungus was found in the plants with wilt symptoms. It appears, therefore that, the wilt on tomato plants in Sotouboua district was caused by R. solanacearum. This, in our knowledge, is the first report on R. solanacearum infection on tomato in Togo.


1994 ◽  
Vol 119 (3) ◽  
pp. 642-647 ◽  
Author(s):  
P.B. McGarvey ◽  
M.S. Montasser ◽  
J.M. Kaper

Transgenic tomato plants (Lycopersicon esculentum Mill.) expressing cucumber mosaic virus (CMV) satellite RNA fused to a gene for β-glucuronidase were produced using Agrobacterium-mediated transformation. The R1 progeny of self-crossed R0 plants were challenge-inoculated with virion or RNA preparations of CMV or tomato aspermy virus (TAV). The transgenic plants challenged with CMV-1 showed mild disease symptoms in the first 2 weeks postchallenge followed by a decrease in symptoms, resulting in little difference between the transgenic and uninfected control group by the fourth week. Enzyme-linked immunosorbent assay results showed about a 10-fold decrease in virus accumulation in the transgenic plants compared to controls. Tolerance was evident only in plants that contained the recombinant insert and produced mature unit-length satellite RNA after CMV infection. Plants challenged with TAV showed no significant tolerance to virus-induced symptoms.


Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1403-1403 ◽  
Author(s):  
M. Tessitori ◽  
A. Reina ◽  
V. Catara ◽  
G. Polizzi

Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV) are among the most important viral pathogens of ornamental plants (1). Polygala myrtifolia L. (myrtle-leaf milkwort), originating from South Africa, and a member of the Polygalaceae, was recently introduced in Italy as a cultivated ornamental shrub for its fast and attractive free-flowering growth and drought-resistant characteristics. It can become an invasive plant and is now considered a serious problem in coastal areas of Australia where it was introduced as a garden plant. In Italy, P. myrtifolia is propagated by cuttings in commercial nurseries during the summer. In the winter of 2002, plants of P. myrtifolia growing in pots in an ornamental nursery in Sicily showed virus-like mosaic and malformation of leaves that appeared lanceolate with a lack of flowering. Leaf tissue was analyzed by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with polyclonal antisera to CMV, TSWV (Lettuce type), and INSV. Positive ELISA results were obtained only with the CMV polyclonal antisera. Complete remission of symptoms was observed on new flushes after pruning and incubation of infected plants at warm temperatures (30 and 20°C, day and night, respectively). This evidence led to the hypothesis that the disease or virus was disseminated by transportation and propagation of plants without visible symptoms during the hot season. A survey was also performed in two historical gardens of Catania (Sicily) where a group of apparently healthy P. myrtifolia plants, from the previously mentioned ornamental nursery in Sicily, were introduced as a single specimen or to form a hedge. These plants showed the same leaf malformations and mosaic symptoms observed in the nursery. DAS-ELISA confirmed the presence of CMV but not TSWV and INSV. To our knowledge, this is the first report of CMV on P. myrtifolia and it adds a new host to over 1,000 species (85 plant families) infected by this virus. Reference: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997.


2011 ◽  
Vol 39 (1) ◽  
pp. 30 ◽  
Author(s):  
Mehmet Ali SEVIK ◽  
Cemile AKCUCURA

Parsley plants are grown throughout Turkey as summer and winter crops. Diseased plants having typical of a virus infection such as mosaic, mottling, and leaf distortion symptoms were frequently observed in most of the parsley fields and vegetable public markets in the Middle Black Sea Region of Turkey in 2010. Using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Cucumber mosaic virus (CMV) was detected on the diseased parsley plants. However, using farmers and commercial seed lots, CMV was not detected in seeds or germinating seedlings.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 914-914 ◽  
Author(s):  
T. Ghotbi ◽  
K. Bananej

Banana bunchy top virus (BBTV), Banana streak virus (BSV), and Cucumber mosaic virus (CMV) (genus Cucumovirus, family Bromoviridae [2]) cause widespread economic losses on banana (Musa sp.) throughout the world and have been reported on banana in different countries including Pakistan along its southeastern border with Iran (1). A survey was conducted from 2004–2005 to identify viruses infecting banana in greenhouses in different growing areas in northern Iran, Mazandaran Province (Sari, Babol, Behshahr, and Ghaemshahr cities). A total of 180 samples from seven banana-growing greenhouses with symptoms of mosaic, chlorosis, stunting, and fruit malformation were collected. All samples were tested for CMV with polyclonal antibodies using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (CMV strain D subgroup I; gifted by H. Lecoq, INRA, Avignion, France). For sap inoculation onto indicator test plants, selected ELISA-positive leaf samples were ground in chilled 0.01 M phosphate buffer, pH 7.0, containing 0.15% 2-mercaptoethanol. Chlorotic and necrotic local lesions developed on Chenopodium amaranticolor and Vigna unguiculata (cv. Mashad local) 10 and 12 days postinoculation, respectively. Cucumis sativus and Nicotiana rustica also developed systemic mosaic symptoms (3). All indicator test plants were rechecked for the presence of CMV using DAS-ELISA. On the basis of serological tests and indicator host plants reactions, CMV was identified in 32% of samples including Sari (13.8%), Babol (2.7%), Behshahr (10%) and Ghahemshahr (5%), respectively. Fifty-five samples did not react with CMV antiserum but the presence of symptoms resembling BBTV and BSV (4) emphasizes the need for further investigations to confirm the presence and identities of other viruses. References: (1) J. Bird and F. L. Wellman. Phytopathology 52:286, 1962. (2) S. K. Choi et al. J. Virol. Methods 83:67, 1999. (3) A. J. Gibbs and B. D. Harrison. Descriptions of Plant Viruses. No.1. CMI/AAB, Surrey, England, 1970. (4) R. C. Ploetz et al., eds. Compendium of Tropical Fruit Diseases. The American Phytopathological Society, St. Paul, MN, 1994.


1979 ◽  
Vol 59 (4) ◽  
pp. 1077-1083 ◽  
Author(s):  
D. P. ORMROD ◽  
W. G. KEMP

The sensitivity of three tomato cultivars to several concentrations of ozone was evaluated after prior sequential inoculations with tobacco mosaic virus (TMV) and/or cucumber mosaic virus (CMV). Ozone injury in inoculated and uninoculated tomatoes varied from slight to severe depending on the virus, cultivar, ozone concentration and virus incubation period. The frequency of increased ozone injury was about twice as great as that of suppressed injury on infected plants. Ozone injury occurred more frequently in TMV-inoculated plants than in those inoculated with CMV. There were more increases than decreases in ozone injury after 7 or 14 days of virus infection, but mainly decreases in injury after 21 days infection. Growth was significantly reduced in plants exposed to ozone after a 21-day virus incubation period, particularly when they were inoculated with both viruses.


Author(s):  
Rami Obeid ◽  
Elias Wehbe ◽  
Mohamad Rima ◽  
Mohammad Kabara ◽  
Romeo Al Bersaoui ◽  
...  

Background: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particularly tobacco, causing a production loss. Objectives: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. Methods: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crops samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. Results and Discussion: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. Conclusion: Our study is the first in Lebanon revealing TMV infection in crop fields, and highlighting the danger that may affect the future of agriculture.


Sign in / Sign up

Export Citation Format

Share Document