scholarly journals Comparative characteristics of diesel engines and gas turbine power plants for mobile vehicles

2020 ◽  
Vol 1 (3) ◽  
pp. 7-13
Author(s):  
V.A. Gusarov ◽  
◽  
Z.A. Godzhaev ◽  

The paper considers the use of diesel-electric power plants on mobile vehicles, analyzes their use and application. Comparative power and mass characteristics of diesel and gas turbine power units are given; the positive and negative aspects of their use are shown. The efficiency of the introduc-tion of gas turbine engines on tractors of various traction classes for agricultural purposes has been determined and a new kinematic diagram of the power plant of a mobile vehicle has been devel-oped. An analysis was carried out and it was established that gas turbine agricultural equipment was never produced in Russia. There were carried out the individual experimental studies of not of a systemic nature, which were terminated for reasons independent of the result. The aim of the work is to develop an innovative kinematic diagram with an electric drive and a power unit based on a gas turbine engine for a mobile agricultural vehicle, using the latest advances in science and technology in terms of the development of gas turbine technologies. It has been established that the mass-energy characteristics of gas turbine plants are much better than diesel ones: the level of vibration is significantly lower, the torque of the power plant at low speeds is higher, the operation of the tractor is simpler. All these open up wide prospects for their use on mobile agricultural vehicles. Experimental studies on the processing of 1 hectare of area in terms of economic efficiency have shown the indisputable advantage of an almost laboratory model of a tractor with a gas turbine en-gine, relative to the same tractor with a diesel engine, which has been produced for many years, ex-pressed, despite a slightly higher fuel consumption, in the use of cheaper kerosene.

2021 ◽  
Vol 15 (2) ◽  
pp. 26-32
Author(s):  
V. A. Gusarov

The authors showed the necessity to develop a rear-wheel drive hybrid mobile agricultural vehicle with electric drive and power plant. (Research purpose) To develop and study a new kinematic scheme of a mobile vehicle based on a self-propelled tractor T-16 chassis, which provides increased reliability, comfortable working conditions for the operator, a significant improvement in the environmental situation, and better economic efficiency. (Materials and methods) The authors listed the advantages of the new hybrid vehicle kinematic scheme. They gave the comparative technical characteristics of a diesel engine and an asynchronous electric motor. They developed a new methodology for calculating gas turbine engine technical parameters and described the production process of an electric drive with a capacity of 11 kilowatts to drive the driving wheels. The authors gave a thermal design of the compressor parameters, turbine. They calculated the excess air ratio. According to the parameters obtained, a K27-145 turbocharger was chosen, which simultaneously served as a turbine and a compressor of a gas turbine engine. A kinematic diagram was created with a gas turbine electric generator, storage batteries, an asynchronous frequency-controlled motor and a mechanical gearbox. (Results and discussion) The authors proposed to use a mobile vehicle as a mobile power plant: an output socket with a voltage of 220-230 volts operated from an inverter connected to batteries; the second socket – with a three-phase voltage of 400 volts – from the generator of the power gas turbine plant. (Conclusions) It was proved that the proposed hybrid mobile vehicle design on a battery and a gas turbine was capable of operating throughout the entire working day, and to provide 16 horsepower of a diesel engine, it was enough to install an asynchronous electric motor with a capacity of 7.5 kilowatts. The authors calculated the compressor performance of the gas turbine engine, which was 0.178 kilograms per second. The geometric parameters of the combustion chamber and the technical characteristics of the turbocharger were determined.


Author(s):  
Richard P. Johnston

Potential LHV performance of an indirect coal-fired gas turbine-based combined cycle plant is explored and compared to the typical LHV 35–38 % thermal efficiencies achievable with current coal-fired Rankine Cycle power plants. Plant performance with a baseline synchronous speed, single spool 25:1 pressure ratio gas turbine with a Rankine bottoming cycle was developed. A coal-fired High Temperature Advanced Furnace (HITAF) supplying 2000° F. (1093° C.) hot pressurized air for the gas turbine was modeled for the heat source. The HITAF concept along with coal gas for supplemental heating, are two important parts of the clean coal technology program for power plants. [1,2] From this baseline power plant arrangement, different gas turbine engine configurations with two pressure ratios are evaluated. These variations include a dual spool concentric shaft gas turbine, dual spool non-concentric shaft arrangement, intercooler, liquid metal loop re-heater, free power turbine (FPT) and post HITAF duct burner (DB). A dual pressure Heat Recovery Steam Generator (HRSG) with varying steam pressures to fit conditions is used for each engine. A novel steam generating method employing flash tank technology is applied when a water-cooled intercooler is incorporated. A halogenated hydrocarbon working fluid is also evaluated for lower temperature sub-bottoming Rankine cycle equipment. Current technology industrial gas turbine component performance levels are applied to these various engines to produce a range of LHV gross gas turbine thermal efficiency estimates. These estimates range from the lower thirties to over forty percent. Overall LHV combined cycle plant gross thermal efficiencies range from nearly forty to over fifty percent. All arrangements studied would produce significant improvements in thermal efficiency compared to current coal-fired Rankine cycle power plants. Regenerative inter-cooling, free power turbines, and dual-spool non-concentric shaft gas turbine arrangements coupled with post-HITAF duct burners produced the highest gas turbine engine and plant efficiency results. These advanced engine configurations should also produce operational benefits such as easier starting and much improved part power efficiency over the baseline engine arrangement. An inter-turbine liquid metal re-heat loop reduced engine thermal efficiency but did increase plant power output and efficiency for the example studied. Use of halogenated hydrocarbons as a working fluid would add to plant power output, but at the cost of significant additional plant equipment.


2020 ◽  
pp. 61-67
Author(s):  
Юрий Юрьевич Терещенко ◽  
Иван Алексеевич Ластивка ◽  
Павел Владимирович Гуменюк ◽  
Су Хунсян

Increasing the efficiency and effectiveness of a gas turbine engine can be achieved through a comprehensive review of all tasks that determine the parameters and characteristics of an aircraft power plant and aircraft. An important place in this complex is occupied by the problem of obtaining the most efficient traction and power plant based on the integration of the parameters and characteristics of the nacelle and gas turbine engine, consisting of a universal gas generator module and a turbofan module. Reducing the negative impact of the engine nacelle module on effective traction and effective specific fuel consumption is an urgent problem that can be solved based on the results of studies of the integration parameters and characteristics of the engine nacelle of the gas generator module and the gas turbine engine with the turbine-fan extension module, namely, with the implementation of structurally layout diagram of a gas turbine engine with a modular design with a rear arrangement of a turbofan attachment. For modern power plants with bypass gas turbine engines with a large bypass ratio, the external resistance is 2-3 % of the engine thrust during cruising operation. The results of experimental studies have shown that the external resistance of power plants with bypass gas turbine engines of modern supersonic aircraft is 4-6 % of the engine thrust during cruising operation. The paper considers the issues of aerodynamic integration of a gas turbine engine and a nacelle of an aircraft power plant. Aerothermogasdynamic integration of a gas turbine engine and an aircraft provides for the coordination of the parameters of the working process and the characteristics of the gas turbine engine and the parameters and characteristics of the nacelle of the aircraft in order to obtain optimal parameters and characteristics of the aircraft in the design flight conditions. The dependences of the relative effective thrust on the flight velocity are obtained. The obtained dependencies show the influence of the external resistance of the engine nacelle on the effective thrust of the bypass engine at subsonic flight velocities. The calculations were performed to lengthen the nacelle in the range from 4 to 8.


2019 ◽  
pp. 39-43
Author(s):  
Владимир Анатольевич Шкабура

It is considered the issues of improving small-sized engines through the application of a new type of turbomachines – turbo-compressors with general impeller (TCG) to develop engines and power plants. For example, it is shown a diagram of the simplest small-sized gas turbine engine using TCG. For the systematization of relatively efficient TCG schemes, a classification has been developed and is given in the article, of possible schemes for a turbocharger with a common impeller. The classification is based on 5 possible directions of movement of the working medium in the blade apparatus – axial (parallel to the axis of rotation of the machine), centrifugal, centripetal, diagonal and tangential. To implement one or another flowing pattern in the impeller, it is necessary to select the appropriate shape of the impeller blades and the location of the nozzle, exhaust, suction and discharge channels relative to each other. Depending on the direction of movement of the gas flows, turbo-compressors with a common impeller may have two flow patterns in interscapular impeller space – direct-flow and counter-flow. If the directions of the gas and airflow coincide concerning the axis of rotation of the impeller, then the flow pattern in the TCG is direct-flow, with opposite flow flows it is countercurrent. For carrying out the enlarged gas-dynamic calculation of TCG, formulas are given that make it possible to calculate the circumferential force arising on the blades of the impeller in the compressor and turbine working channels of the TCG. Also, formulas are given, with correction factors, for calculating the power factor of the compressor part and the load factor of the turbine part. In the process of computational and experimental studies, the characteristic of the compressor part of the TCG experimental model was obtained. The test results of the compressor part of the TCG experimental model showed good agreement between the calculated and experimental values. Studies have shown that a turbocharger with a common impeller can be used as part of small-size gas turbine engines and in a turbo-supercharging system of a small-capacity internal combustion engine with not high supercharging. 


Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


2016 ◽  
Vol 138 (06) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article discusses various fields where gas turbines can play a vital role. Building engines for commercial jetliners is the largest market segment for the gas turbine industry; however, it is far from being the only one. One 2015 military gas turbine program of note was the announcement of an U.S. Air Force competition for an innovative design of a small turbine engine, suitable for a medium-size drone aircraft. The electrical power gas turbine market experienced a sharp boom and bust from 2000 to 2002 because of the deregulation of many electric utilities. Since then, however, the electric power gas turbine market has shown a steady increase, right up to present times. Coal-fired plants now supply less than 5 percent of the electrical load, having been largely replaced by new natural gas-fired gas turbine power plants. Working in tandem with renewable energy power facilities, the new fleet of gas turbines is expected to provide reliable, on-demand electrical power at a reasonable cost.


2021 ◽  
Vol 286 ◽  
pp. 04013
Author(s):  
George Iulian Balan ◽  
Octavian Narcis Volintiru ◽  
Ionut Cristian Scurtu ◽  
Florin Ioniță ◽  
Mirela Letitia Vasile ◽  
...  

Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines are not designed and built to allow the admission of foreign objects (in this case - ice), it is necessary to avoid the accumulation of ice through anti-icing systems and not to melt ice through defrost systems. Naval anti-icing systems may have as a source of energy flow compressed air, supersaturated steam, exhaust gases, electricity or a combination of those listed. The monitoring and optimization of the operation of the anti-icing system gives the gas turbine power plant an operation as close as possible to the normal regimes stipulated in the ship's construction or retrofit specification.


Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


Author(s):  
Joe D. Craig ◽  
Carol R. Purvis

A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.


Sign in / Sign up

Export Citation Format

Share Document