Drone-assisted automated plant diseases identification using spiking deep conventional neural learning

2021 ◽  
pp. 1-16
Author(s):  
Kubilay Demir ◽  
Vedat Tümen

Detection and diagnosis of the plant diseases in the early stage significantly minimize yield losses. Image-based automated plant diseases identification (APDI) tools have started to been widely used in pest managements strategies. The current APDI systems rely on images captured in laboratory conditions, which hardens the usage of the APDI systems by smallholder farmers. In this study, we investigate whether the smallholder farmers can exploit APDI systems using their basic and cheap unmanned autonomous vehicles (UAVs) with standard cameras. To create the tomato images like the one taken by UAVs, we build a new dataset from a public dataset by using image processing tools. The dataset includes tomato leaf photographs separated into 10 classes (diseases or healthy). To detect the diseases, we develop a new hybrid detection model, called SpikingTomaNet, which merges a novel deep convolutional neural network model with spiking neural network (SNN) model. This hybrid model provides both better accuracy rates for the plant diseases identification and more energy efficiency for the battery-constrained UAVs due to the SNN’s event-driven architecture. In this hybrid model, the features extracted from the CNN model are used as the input layer for SNNs. To assess our approach’s performance, firstly, we compare the proposed CNN model inside the developed hybrid model with well-known AlexNet, VggNet-5 and LeNet models. Secondly, we compare the developed hybrid model with three hybrid models composed of combinations of the well-known models and SNN model. To train and test the proposed neural network, 32022 images in the dataset are exploited. The results show that the SNN method significantly increases the success, especially in the augmented dataset. The experiment result shows that while the proposed hybrid model provides 97.78% accuracy on original images, its success on the created datasets is between 59.97%–82.98%. In addition, the results shows that the proposed hybrid model provides better overall accuracy in the classification of the diseases in comparison to the well-known models and LeNet and their combination with SNN.

As of now the detection and classification of lung cancer disease is one of the most tedious tasks in the field of medical area. In the diversified sector of medical industry usage of technology plays a very important role. Detection and diagnosis of the lung cancer at an early stage with more accuracy is the most challenging task. So, in this research article 400 set of images has been used for this experiment. Best feature extraction technique and best feature optimization technique has been analyzed on the basis of parameter minimum execution time with minimum error rate. Then finest selection of features leads to an optimal classification. In this context, one of the best classification algorithm the support vector machine has been proposed in this hybrid model for the binary classification. Further Feed forward back propagation neural network has been implemented with SVM. This proposed hybrid model reduces the complexity of the system on the basis of minimum execution time that is 1.94 sec. with minimum error rate 29.25. Further better classification accuracy 99.6507% has been achieved by using this unique hybrid model


A novel anomaly detection-based NIDS is main demand in the computer networking security for discriminating malicious software attack at the early stage. It monitors and analyzes network traffics, checking abnormal behaviors or attack signatures. The detection rate or accuracy is the prerequisite in the network intrusion detection models, also, developing adaptive and flexible model is a critical challenge regarding to unseen attack. This search paper included the deep neural network (DNN) as anomaly detection model can be used within software defined networking (SDN). Dropout technique is used to prevent DNN model from overfitting. Six features have information about the flow were chosen from NSL-KDD dataset to fit and evaluate this model, these data features could be matched to packet-in message header values, also, these features enable the model to be a good generative, and well perform on intrusion recognition issue with a subset of the data. Cross entropy loss function with SoftMax output layer were used for getting the differences between the two different distribution and mapping to multiple class classification covered five class labels, one is normal and the others are attacks (Dos, R2L, U2L and Probe). Accuracy is a comparative metric utilized for assessing the model performance. The results are promising, where accuracy achieved 92.65%.


2021 ◽  
Vol 11 ◽  
Author(s):  
Byoungjun Kim ◽  
You-Kyoung Han ◽  
Jong-Han Park ◽  
Joonwhoan Lee

Detecting plant diseases in the earliest stages, when remedial intervention is most effective, is critical if damage crop quality and farm productivity is to be contained. In this paper, we propose an improved vision-based method of detecting strawberry diseases using a deep neural network (DNN) capable of being incorporated into an automated robot system. In the proposed approach, a backbone feature extractor named PlantNet, pre-trained on the PlantCLEF plant dataset from the LifeCLEF 2017 challenge, is installed in a two-stage cascade disease detection model. PlantNet captures plant domain knowledge so well that it outperforms a pre-trained backbone using an ImageNet-type public dataset by at least 3.2% in mean Average Precision (mAP). The cascade detector also improves accuracy by up to 5.25% mAP. The results indicate that PlantNet is one way to overcome the lack-of-annotated-data problem by applying plant domain knowledge, and that the human-like cascade detection strategy effectively improves the accuracy of automated disease detection methods when applied to strawberry plants.


Author(s):  
Varun Sapra ◽  
M.L Saini ◽  
Luxmi Verma

Background: Cardiovascular diseases are increasing at an alarming rate with very high rate of mortality. Coronary artery disease is one of the type of cardiovascular disease, which is not easily diagnosed in its early stage. Prevention of Coronary Artery Disease is possible only if it is diagnosed, at early stage and proper medication is done. Objective: An effective diagnosis model is important not only for the early diagnosis but also to check the severity of the disease. Method: In this paper, a hybrid approach is followed, with the integration of deep learning (multi-layer perceptron) with Case based reasoning to design analytical framework. This paper suggests two phases of the study, one in which the patient is diagnosed for Coronary artery disease and in second phase, if the patient is suffering from the disease then employing Case based reasoning to diagnose the severity of the disease. In the first phase, multilayer perceptron is implemented on reduced dataset and with time-based learning for stochastic gradient descent respectively. Results: The classification accuracy is increase by 4.18 % with reduced data set using deep neural network with time based learning. In second phase, if the patient is diagnosed as positive for Coronary artery disease, then it triggers the Case based reasoning system to retrieve from the case base, the most similar case to predict the severity for that patient. The CBR model achieved 97.3% accuracy. Conclusion: The model can be very useful for medical practitioners as a supporting decision system and thus can save the patients from unnecessary medical expenses on costly tests and can improve the quality and effectiveness of medical treatment.


2019 ◽  
Author(s):  
CHIEN WEI ◽  
Chi Chow Julie ◽  
Chou Willy

UNSTRUCTURED Backgrounds: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN), a well-established deep learning method, can improve prediction accuracy on account of its usage of a large number of parameters for modeling. Whether the HT person fit statistic can be combined with CNN to increase the prediction accuracy of the model and develop an application (APP) to detect DF in children remains unknown. Objectives: The aim of this study is to build a model for the automatic detection and classification of DF with symptoms to help patients, family members, and clinicians identify the disease at an early stage. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF) using CNN to predict DF risk. The accuracy of two sets of characteristics (19 symptoms and four other variables, including person mean, standard deviation, and two HT-related statistics matched to DF+ and DF−) for predicting DF, were then compared. Data were separated into training and testing sets, and the former was used to predict the latter. We calculated the sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) across studies for comparison. Results: We observed that (1) the 23-item model yields a higher accuracy rate (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90) based on the 177-case training set; (2) the Sens values are almost higher than the corresponding Spec values (90% in 10 scenarios) for predicting DF; (3) the Sens and Spec values of the 23-item model are consistently higher than those of the 19-item model. An APP was subsequently designed to detect DF in children. Conclusion: The 23-item model yielded higher accuracy rates (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90). An APP could be developed to help patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.


2020 ◽  
Author(s):  
Ramachandro Majji

BACKGROUND Cancer is one of the deadly diseases prevailing worldwide and the patients with cancer are rescued only when the cancer is detected at the very early stage. Early detection of cancer is essential as, in the final stage, the chance of survival is limited. The symptoms of cancers are rigorous and therefore, all the symptoms should be studied properly before the diagnosis. OBJECTIVE Propose an automatic prediction system for classifying cancer to malignant or benign. METHODS This paper introduces the novel strategy based on the JayaAnt lion optimization-based Deep recurrent neural network (JayaALO-based DeepRNN) for cancer classification. The steps followed in the developed model are data normalization, data transformation, feature dimension detection, and classification. The first step is the data normalization. The goal of data normalization is to eliminate data redundancy and to mitigate the storage of objects in a relational database that maintains the same information in several places. After that, the data transformation is carried out based on log transformation that generates the patterns using more interpretable and helps fulfill the supposition, and to reduce skew. Also, the non-negative matrix factorization is employed for reducing the feature dimension. Finally, the proposed JayaALO-based DeepRNN method effectively classifies cancer-based on the reduced dimension features to produce a satisfactory result. RESULTS The proposed JayaALO-based DeepRNN showed improved results with maximal accuracy of 95.97%, the maximal sensitivity of 95.95%, and the maximal specificity of 96.96%. CONCLUSIONS The resulted output of the proposed JayaALO-based DeepRNN is used for cancer classification.


Author(s):  
Shu-Farn Tey ◽  
Chung-Feng Liu ◽  
Tsair-Wei Chien ◽  
Chin-Wei Hsu ◽  
Kun-Chen Chan ◽  
...  

Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1122
Author(s):  
Oksana Mandrikova ◽  
Nadezhda Fetisova ◽  
Yuriy Polozov

A hybrid model for the time series of complex structure (HMTS) was proposed. It is based on the combination of function expansions in a wavelet series with ARIMA models. HMTS has regular and anomalous components. The time series components, obtained after expansion, have a simpler structure that makes it possible to identify the ARIMA model if the components are stationary. This allows us to obtain a more accurate ARIMA model for a time series of complicated structure and to extend the area for application. To identify the HMTS anomalous component, threshold functions are applied. This paper describes a technique to identify HMTS and proposes operations to detect anomalies. With the example of an ionospheric parameter time series, we show the HMTS efficiency, describe the results and their application in detecting ionospheric anomalies. The HMTS was compared with the nonlinear autoregression neural network NARX, which confirmed HMTS efficiency.


Sign in / Sign up

Export Citation Format

Share Document