scholarly journals Detection & Classification of Lung Cancer at an Early Stage by Applying Feature Extraction-Optimization and Neural Network on Hybrid Structure

As of now the detection and classification of lung cancer disease is one of the most tedious tasks in the field of medical area. In the diversified sector of medical industry usage of technology plays a very important role. Detection and diagnosis of the lung cancer at an early stage with more accuracy is the most challenging task. So, in this research article 400 set of images has been used for this experiment. Best feature extraction technique and best feature optimization technique has been analyzed on the basis of parameter minimum execution time with minimum error rate. Then finest selection of features leads to an optimal classification. In this context, one of the best classification algorithm the support vector machine has been proposed in this hybrid model for the binary classification. Further Feed forward back propagation neural network has been implemented with SVM. This proposed hybrid model reduces the complexity of the system on the basis of minimum execution time that is 1.94 sec. with minimum error rate 29.25. Further better classification accuracy 99.6507% has been achieved by using this unique hybrid model

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Morteza Amini ◽  
MirMohsen Pedram ◽  
AliReza Moradi ◽  
Mahshad Ouchani

The automatic diagnosis of Alzheimer’s disease plays an important role in human health, especially in its early stage. Because it is a neurodegenerative condition, Alzheimer’s disease seems to have a long incubation period. Therefore, it is essential to analyze Alzheimer’s symptoms at different stages. In this paper, the classification is done with several methods of machine learning consisting of K -nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), linear discrimination analysis (LDA), and random forest (RF). Moreover, novel convolutional neural network (CNN) architecture is presented to diagnose Alzheimer’s severity. The relationship between Alzheimer’s patients’ functional magnetic resonance imaging (fMRI) images and their scores on the MMSE is investigated to achieve the aim. The feature extraction is performed based on the robust multitask feature learning algorithm. The severity is also calculated based on the Mini-Mental State Examination score, including low, mild, moderate, and severe categories. Results show that the accuracy of the KNN, SVM, DT, LDA, RF, and presented CNN method is 77.5%, 85.8%, 91.7%, 79.5%, 85.1%, and 96.7%, respectively. Moreover, for the presented CNN architecture, the sensitivity of low, mild, moderate, and severe status of Alzheimer patients is 98.1%, 95.2%,89.0%, and 87.5%, respectively. Based on the findings, the presented CNN architecture classifier outperforms other methods and can diagnose the severity and stages of Alzheimer’s disease with maximum accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Emmanuel Adetiba ◽  
Oludayo O. Olugbara

This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG) and local binary pattern (LBP) state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations.


2021 ◽  
Vol 11 (1) ◽  
pp. 251-261
Author(s):  
T. Arumuga Maria Devi ◽  
V. I. Mebin Jose

Abstract Lung cancer is considered to be one of the deadly diseases that threaten the survival of human beings. It is a challenging task to identify lung cancer in its early stage from the medical images because of the ambiguity in the lung regions. This paper proposes a new architecture to detect lung cancer obtained from the CT images. The proposed architecture has a three-stream network to extract the manual and automated features from the images. Among these three streams, automated feature extraction as well as the classification is done using residual deep neural network and custom deep neural network. Whereas the manual features are the handcrafted features obtained using high and low-frequency sub-bands in the frequency domain that are classified using a Support Vector Machine Classifier. This makes the architecture robust enough to capture all the important features required to classify lung cancer from the input image. Hence, there is no chance of missing feature information. Finally, all the obtained prediction scores are combined by weighted based fusion. The experimental results show 98.2% classification accuracy which is relatively higher in comparison to other existing methods.


Author(s):  
Asmitha Shree R ◽  
Sajitha M ◽  
Subha S

Lung Cancer is considered as one of the deadliest diseases among other lung disorders and cancer types and is the leading cause of cancer deaths worldwide. Lung cancer is a curable disease if detected in its early stages that makes up 13% of all cancer diagnoses and 27% of all cancer deaths. The objective of this paper is mainly focused on categorizing the patients Computed Tomography (CT) lung images as normal or abnormal. The images are subjected to segmentation to focus on detecting the cancerous region to classify. Effective feature selection and feature extraction is made by applying Watershed Transform and Principal Component Analysis. The emphasis is on the feature extraction stage to yield a better classification performance. The classification of CT images as benign or malignant is done using Machine Learning based Neural Network.


Author(s):  
C. Sothe ◽  
L. E. C. la Rosa ◽  
C. M. de Almeida ◽  
A. Gonsamo ◽  
M. B. Schimalski ◽  
...  

Abstract. The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced feature extraction and classification methods. Different from the traditional feature extraction methods, that highly depend on user’s knowledge, the convolutional neural network (CNN)-based method can automatically learn and extract the spatial-related features layer by layer. However, in order to capture significant features of the data, the CNN classifier requires a large number of training samples, which are hardly available when dealing with tree species in tropical forests. This study investigated the following topics concerning the classification of 14 tree species in a subtropical forest area of Southern Brazil: i) the performance of the CNN method associated with a previous step to increase and balance the sample set (data augmentation) for tree species classification as compared to the conventional machine learning methods support vector machine (SVM) and random forest (RF) using the original training data; ii) the performance of the SVM and RF classifiers when associated with a data augmentation step and spatial features extracted from a CNN. Results showed that the CNN classifier outperformed the conventional SVM and RF classifiers, reaching an overall accuracy (OA) of 84.37% and Kappa of 0.82. The SVM and RF had a poor accuracy with the original spectral bands (OA 62.67% and 59.24%) but presented an increase between 14% and 21% in OA when associated with a data augmentation and spatial features extracted from a CNN.


2020 ◽  
Vol 1 (1) ◽  
pp. 15-21
Author(s):  
Salah Eldeen Babiker ◽  

The most common cancer of the lung cannot be ignored and can cause late-health death. Now CT can be used to help clinicians diagnose early-stage lung cancer. In certain cases the diagnosis of lung cancer detection is based on doctors' intuition, which can neglect other patients and cause complications. Deep learning in most other areas of medical diagnosis has proven to be a common and powerful tool. This research is planned for improving the residual evolutionary neural network (IRCNN). These networks apply with some changes to the benign and malignant lung nodule to the CT image classification task. The segmenting of the nodule is performed here by clustering k-means. The LIDC-IDRI database analysed those networks. Experimental findings show that the IRCNN network archived the best performance of lung nodule classification, which findings best among established methods.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2021 ◽  
pp. 102568
Author(s):  
Mesut Ersin Sonmez ◽  
Numan Eczacıoglu ◽  
Numan Emre Gumuş ◽  
Muhammet Fatih Aslan ◽  
Kadir Sabanci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document