scholarly journals Optical Wireless Communication: A Survey of Recent Advances, Applications and Challenges

Author(s):  
Nandhini Devi R ◽  
Leones Sherwin Vimalraj S ◽  
Lydia J

This paper proposes the Optical Wireless Communication (OWC) for different Application, Advances and Challenges as high data rate multimedia services are evolving continuously and exponentially increasing the demand for wireless capacity 5G generation and upgrading Technologies. These are used to bypass the RF transmission band, which is inadequate to meet the demand for future high data rate 5G services. It offers services for both indoor and outdoor application as well as in the submerged area with contact distances ranging from nm to more than 10,000 km. This paper provides an overview and performance analysis of technical communication involving Visible light, Line of sight underwater, free space, optical communication, optical camera communication and light detection for all surveys of keys understanding technologies (OWCs) and presents them as aspects of criteria such as spectrum use, application, design, classification advances and challenges.


Author(s):  
Osama Zwaid Alsulami ◽  
Amal A. Alahmadi ◽  
Sarah O. M. Saeed ◽  
Sanaa Hamid Mohamed ◽  
T. E. H. El-Gorashi ◽  
...  

Optical wireless communication (OWC) is a promising technology that can provide high data rates while supporting multiple users. The optical wireless (OW) physical layer has been researched extensively, however, less work was devoted to multiple access and how the OW front end is connected to the network. In this paper, an OWC system which employs a wavelength division multiple access (WDMA) scheme is studied, for the purpose of supporting multiple users. In addition, a cloud/fog architecture is proposed for the first time for OWC to provide processing capabilities. The cloud/fog-integrated architecture uses visible indoor light to create high data rate connections with potential mobile nodes. These OW nodes are further clustered and used as fog mini servers to provide processing services through the OW channel for other users. Additional fog-processing units are located in the room, the building, the campus and at the metro level. Further processing capabilities are provided by remote cloud sites. Two mixed-integer linear programming (MILP) models were proposed to numerically study networking and processing in OW systems. The first MILP model was developed and used to optimize resource allocation in the indoor OWC systems, in particular, the allocation of access points (APs) and wavelengths to users, while the second MILP model was developed to optimize the placement of processing tasks in the different fog and cloud nodes available. The optimization of tasks placement in the cloud/fog-integrated architecture was analysed using the MILP models. Multiple scenarios were considered where the mobile node locations were varied in the room and the amount of processing and data rate requested by each OW node was varied. The results help to identify the optimum colour and AP to use for communication for a given mobile node location and OWC system configuration, the optimum location to place processing and the impact of the network architecture. This article is part of the theme issue ‘Optical wireless communication’.



2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Paramjot Singh ◽  
Himali Sarangal ◽  
Simrandeep Singh Thapar

Abstract In order to achieve large capacity inter-satellite communication, optical wireless communication (OWC) is emerging as a promising area of research amongst the academic and research groups. While radio over fiber (ROF) and advanced modulation technique is considered to be a key enabling technology in the development of OWC based access networks for high-speed data transmission. This paper has proposed a novel ROF based system model using OWC for long haul high data rate applications. This system is designed using differential quadrature phase shift keying (DQPSK) through inter-satellite optical wireless communication (IsOWC) channel. The verification of the performance is performed at bit rates of 100 and 200 Gbps over a space distance range up to 1000 to 50000 km under different transmitted power. The simulative investigation has been carried out in terms of important parameters like BER, Q-factor and eye diagrams.





Author(s):  
Archana B. ◽  
T. P. Surekha

The growing interest towards wireless communication advancement with smart devices has provided the desired throughput of wireless communication mechanisms. But, attaining high-speed data packets amenities is the biggest issue in different multimedia applications. Recently, OFDM has come up with the useful features for wireless communication however it faces interference issues at carrier level (intercarrier interferences). To resolve these interference issues in OFDM, various existing mechanisms were utilized cyclic prefix, but it leads to redundancy in transmitted data. Also, the transmission of this redundant data can take some more power and bandwidth. All these limitations factors can be removed from a parallel cancellation mechanism. The integration of parallel cancellation and Convolution Viterbi encoding and decoding in MIMO-OFDMA will be an effective solution to have high data rate which also associations with the benefits of both the architectures of MIMO and OFDMA modulation approaches. This paper deals with this integrated mechanism for efficient resource allocation and power consumption. For performance analysis, MIMO-OFDMA system is analyzed with three different approaches likeMIMO-OFDM system without parallel cancellation (MIMO-OFDMA-WPC), MIMO-OFDMA System with parallel cancellation (MIMO-OFDMA-PC) and proposed IMO-OFDMA system with parallel cancellation and Convolution Viterbi encoding/decoding (pMIMO-OFDMA-PC &CVed) for 4x4 transmitter and receiver. Through performance analysis, it is found that the proposed system achieved better resource allocation (bandwidth) with high data rate by minimized BER rate and achieved least power consumption with least BER.





2020 ◽  
Vol 4 (3) ◽  
pp. 125-134
Author(s):  
Ajewole M. O ◽  
Owolawi P. A ◽  
Ojo J. S ◽  
Adetunji R. M.

Reliable broadband communication requires secure high data rate and bandwidth links. With the observedincrease in broadband users, known communication systems such as RF and microwave links cannot promise suchrequirements due to link interference and low bandwidth. A current communication system that promises suchrequirements and more is Free Space Optical (FSO) communication. This system basically involves the transmissionof signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. However,location-variant atmospheric channel degrades the performance of an FSO system under severe atmosphericconditions, thus necessitating local atmospheric attenuation studies.This paper presents the characterization of both fog- and rain-induced attenuation and the performance ofan FSO system in a terrestrial terrain at Akure, Nigeria. One-year archived visibility data and in-situ measured 1-minute integration time rain rate data obtained from Nigerian Meteorological Agency (NIMET) and the Departmentof Physics, Federal University of Technology, Akure were used to compute the fog- and rain-induced specificattenuations using Kruse model and Carboneur model respectively. The performance of the FSO system is analyzedthrough link margin by using the parameters of a commercial optical transceiver, Terescope 5000.



Sign in / Sign up

Export Citation Format

Share Document