Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer’s Disease

2018 ◽  
Vol 64 (s1) ◽  
pp. S455-S467 ◽  
Author(s):  
Carola Stockburger ◽  
Schamim Eckert ◽  
Gunter P. Eckert ◽  
Kristina Friedland ◽  
Walter E. Müller
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 649
Author(s):  
Kun Jia ◽  
Heng Du

Advanced age is the greatest risk factor for aging-related brain disorders including Alzheimer’s disease (AD). However, the detailed mechanisms that mechanistically link aging and AD remain elusive. In recent years, a mitochondrial hypothesis of brain aging and AD has been accentuated. Mitochondrial permeability transition pore (mPTP) is a mitochondrial response to intramitochondrial and intracellular stresses. mPTP overactivation has been implicated in mitochondrial dysfunction in aging and AD brains. This review summarizes the up-to-date progress in the study of mPTP in aging and AD and attempts to establish a link between brain aging and AD from a perspective of mPTP-mediated mitochondrial dysfunction.


2020 ◽  
Vol 27 (3) ◽  
pp. 313-325
Author(s):  
Dmitry Igorevich Pozdnyakov ◽  
Andrey Voronkov

Background: Alzheimer’s disease is the main form of dementia, which affects more than46 million people every year. In the pathogenesis of Alzheimer’s disease, a significant roleplayed mitochondrial dysfunction, which is a promising pharmacotherapeutic target ofneuroprotective therapy. In this regard, this study aimed to evaluate the effect of the 4-hydroxy-3,5-ditretbutyl cinnamic acid on changes of mitochondrial function in experimental Alzheimer’sdisease induced by Aβ injection in rats. Methods: Alzheimer’s disease was modeled on Wistar rats by injecting a fragment of β-amyloid(Aß 1-42) into the CA1 part of the hippocampus. The test-compound (4-hydroxy-3,5-ditretbutylcinnamic acid, 100 mg/kg, per os) and the reference drugs (resveratrol, 20 mg/kg, per os andEGB671, 100 mg/kg, per os) were administered for 60 days after surgery. The restoration of amemorable trace in animals was evaluated in the Morris water maze test. The concentrationof β -amyloid, Tau-protein, and changes in parameters characterizing mitochondrial function(cellular respiration, concentration of mitochondrial ROS, activity of apoptosis reactions(caspase-3 and apoptosis induced factor) were also determined. Results: This study showed that the administration of 4-hydroxy-3,5-ditretbutyl cinnamic acidat a dose of 100 mg/kg (per os) in rats with reproduced Alzheimer’s disease contributed to thenormalization of mitochondrial respiratory function. It was expressed in the normalizationof aerobic metabolism, increased activity of respiratory complexes and stabilization ofmitochondrial membrane potential. Also, when animals were treated with 4-hydroxy-3,5-ditretbutyl cinnamic acid, there was a decrease in the concentration of intracellular calcium(by 39.7% (p<0.05)), the intensity of apoptosis reactions, and an increase of the latent time ofthe mitochondrial permeability transition pore opening (by 3.8 times (p<0.05)), and decreasesH2O2 concentration (by 21.2% (p<0.05)). Conclusion: In the course of this study, it was found that 4-hydroxy-3,5-ditretbutyl cinnamicacid exceeds the value of neuroprotective action in compared to the reference agents –resveratrol (20 mg/kg) and Ginkgo biloba extract (EGB671, 100 mg/kg).


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Heather M. Wilkins ◽  
Russell H. Swerdlow

AbstractAdvancing age is a major risk factor for Alzheimer’s disease (AD). This raises the question of whether AD biology mechanistically diverges from aging biology or alternatively represents exaggerated aging. Correlative and modeling studies can inform this question, but without a firm grasp of what drives aging and AD it is difficult to definitively resolve this quandary. This review speculates over the relevance of a particular hallmark of aging, mitochondrial function, to AD, and further provides background information that is pertinent to and provides perspective on this speculation.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


2019 ◽  
Vol 10 (2) ◽  
pp. 470 ◽  
Author(s):  
Ashok K. Shetty ◽  
Raghavendra Upadhya ◽  
Leelavathi N. Madhu ◽  
Maheedhar Kodali

Sign in / Sign up

Export Citation Format

Share Document