Semi-active vibration control of large-scale flexible structure based on fuzzy adaptive SSDV technique

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1199-1206
Author(s):  
Xiang Wang ◽  
Xiaoyu Wang ◽  
Hongyou Chai ◽  
Feng Gao ◽  
Haowei Wang ◽  
...  

In order to suppress the vibration of large-scale flexible structures which are applied on the spacecraft, a semi-active control method based on fuzzy adaptive SSDV (synchronized switch damping on voltage) technique is proposed. The value of voltage source at the switching moment is adjusted adaptively by using fuzzy logic, in order to improve the stability and control precision of the semi-active control system. The feasibility of this method is verified by two kinds of experiments with typical disturbance conditions. By comparing different adaptive displacement-voltage curves, the fuzzy adaptive method can achieve higher control precision. For the initial displacement disturbance of 10 mm, the fuzzy adaptive SSDV method can increase the system damping ratio from 0.6% to 5.1%. The control effect decreases with the increase of initial displacement. For the disturbance caused by the mechanism at the tip position, the method can effectively shorten the vibration damping time and reduce the displacement from 0.3 mm to 0.04 mm.

2014 ◽  
Vol 494-495 ◽  
pp. 1008-1011
Author(s):  
Guang Feng ◽  
Song Jian Sun

In the past, the semi-active control study generally is calculated based on the MATLAB numerical procedure, which cant achieve fine simulation. In this paper, to solve this problem, the finite element software ABAQUS is taken to be secondary development, a numerical simulation method of studying semi-active control is proposed. And the seismic response of a steel column is taken for the research. the numerical simulation analysis of the semi-active control is carried out. The results show that the control effect of the control method is significant, and the simulation result is clearly visible.


2020 ◽  
pp. 107754632096194
Author(s):  
Haining Sun ◽  
Xiaoqiang Tang ◽  
Senhao Hou ◽  
Xiaoyu Wang

Specific satellites with ultralong wings play a crucial role in many fields. However, external disturbance and self-rotation could result in undesired vibrations of the flexible wings, which affect the normal operation of the satellites. In severe cases, the satellites would be damaged. Therefore, it is imperative to conduct vibration suppression for these flexible structures. Utilizing fuzzy-proportional integral derivative control and deep reinforcement learning (DRL), two active control methods are proposed in this article to rapidly suppress the vibration of flexible structures with quite small controllable force based on a cable-driven parallel robot. Inspired by the output law of DRL, a new control method named Tang and Sun control is innovatively presented based on the Lyapunov theory. To verify the effectiveness of these three control methods, three groups of simulations with different initial disturbances are implemented for each method. Besides, to enhance the contrast, a passive pretightening scheme is also tested. First, the dynamic model of the cable-driven parallel robot which comprises four cables and a flexible structure is established using the finite element method. Then, the dynamic behavior of the model under the controllable cable force is analyzed by the Newmark-ß method. Finally, these control methods are implemented by numerical simulations to evaluate their performance, and the results are satisfactory, which validates the controllers’ ability to suppress vibrations.


2021 ◽  
Vol 23 (06) ◽  
pp. 1635-1648
Author(s):  
Reetesh Kumar Maurya ◽  
◽  
Dr. Imran ◽  

This research paper deals with the increasingly urgent energy issues; the world attaches great importance to begin the development of new energy and related technology. At present, large-scale photovoltaic power generation and scale of renewable energy have become parts of development strategy, meanwhile, it is the way to guide the development of the photovoltaic industry. However, because of its own characteristics different from conventional power generation grid-connected PV power station and its security, stability, reliable operation become new challenges that power grid and PV power plant need to face. Grid-connected voltage source inverters are essential for the integration of the distributed energy resources. However, due to the small capacity and intermittent nature of renewable sources, it is extremely difficult to integrate them into the existing grid system. This project has taken an attempt to design a control method for a three-phase grid-connected inverter system for distributed generation applications. The method is hysteresis current control along with PI control. Hysteresis current control is a commonly employed method for power control of VSI. The control procedure is implemented in an analog circuit using Op-amps and other ICs. This controller will generate pulses to fire the inverter in order to control the current output of the inverter. The control method along with the PI controller provides robust current regulation and achieves unity power factor. In addition, in this project development of a controller in D Space is attempted. Simulation and experimental results are provided to demonstrate the effectiveness of the design.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Guo ◽  
Yanfang Liu ◽  
Jing Zhang ◽  
Xiangyang Xu

Clutch fill control in clutch-to-clutch transmissions influences shift quality considerably. An oncoming clutch should be applied synchronously with the release of an offgoing clutch to shift gear smoothly; therefore, the gap between the piston and clutch plates should be eliminated when the torque capacity is near zero at the end of the clutch fill phase. Open-loop control is typically implemented for the clutch fill because of the cost of pressure sensor. Low control precision causes underfill or overfill to occur, deteriorating shift quality. In this paper, a mathematical model of an electrohydraulic clutch shift control system is presented. Special dynamic characteristic parameters for optimal clutch fill control are subsequently proposed. An automatic method for predicting initial fill control parameters is proposed to eliminate distinct discrepancies among transmissions caused by manufacturing or assembling errors. To prevent underfill and overfill, a fuzzy adaptive control method is proposed, in which clutch fill control parameters are adjusted self-adaptively and continually. Road vehicle test results proved that applying the fuzzy adaptive method ensures the consistency of shift quality even after the transmission’s status is changed.


1994 ◽  
Vol 6 (3) ◽  
pp. 230-236
Author(s):  
Shinji Mitsuta ◽  
◽  
Kazuto Seto ◽  
Hiroyuki Ito ◽  
Akio Nagamatsu ◽  
...  

Recently, the necessity for making machines weighing less and operating at high speeds has increased. This paper is concerned with vibration and motion control by a control system which combines a servo controller and a hybrid dynamic absorber. In our method, vibration control and motion control are designed independently. First, the dynamics of a tower structure and a servo motor are modeled. Then, it is shown experimentally that although vibration control by the servo controller alone causes instability due to nonlinear elements such as friction or rattle, the hybrid dynamic absorber does not easily cause this sort of instability. On the comparison of vibration control effect and control force, the hybrid dynamic absorber requires less force. Finally, to know the effect of the new method, we evaluated the motions (triangular wave and sine wave) of the flexible structure. The effectiveness of this vibration and motion control method for the flexible structure was demonstrated by simulations and experiments.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Moulay Tahar Lamchich

This paper deals with the use of triphase shunt active filter which is able to compensate current harmonics, reactive power, and current unbalance produced by nonlinear loads. To perform the identification of disturbing currents, a very simple control method is introduced. It’s formed by a DC voltage regulator and a balance between the average power of load and the active power supplied by the grid. The output current of the voltage source inverter (VSI) must track the reference current. This is done by a neural controller based on a PI-Fuzzy adaptive system as reference corrector. Also to regulate the DC link capacitor voltage a fuzzy logic adaptive PI controller is used.


2014 ◽  
Vol 541-542 ◽  
pp. 1191-1197
Author(s):  
Yan Jun Zhang ◽  
Xiao Fang

Taking into consideration the lack of control precision of the hydraulic system of intelligent asphalt disperser, an internal model control method based on BP neural network was proposed. In this method, the ability of identification of complicated systems using neural network was combined with the feature that internal model control has low requirements on the model precision. In this way, the design of hydraulic controller of asphalt disperser can be achieved. The results show that this method has better robustness with regard to the systematic uncertainty and disturbance when compared with the PID control system, and the control effect is better, which provides a novel approach for the control of hydraulic system of intelligent asphalt disperser.


2013 ◽  
Vol 336-338 ◽  
pp. 551-555
Author(s):  
Qian Ying Ma ◽  
She Liang Wang ◽  
Jun Qiang Zhu ◽  
Er Gang Xiong

Active control in the application has more and more research, the independent modal space control method is transform the system equation into modal coordinates, then obtain the internal decoupling equations express by modal coordinates, and based on control algorithm calculate the modal control force, which achieve real-time control effect. The control calculation method is simple and efficient to meet the needs of active control. The paper introduce modal control theory and implement methods, design and manufacture the piezoelectric driving lever based on the working principle of the piezoelectric pile, then through the test, give the voltage-driving force relationship, which is linear. An active control experiment on a three-layer intelligence space structure had been done, it can be seen that through the active control, the corresponding modal displacement and acceleration of the structures control are a lot of inhibition; at the same time, through spectral analysis, it can be seen the structured modal damping coefficient corresponding to varying degrees have been improved.


2011 ◽  
Vol 299-300 ◽  
pp. 828-831
Author(s):  
Yan Feng Zhu

Considering the very large direct starting current of three-phase asynchronous motor, this paper presents a design method of asynchronous motor soft starter based on a intelligent control- fuzzy adaptive PID control. The simulation model of the soft starting control system is established with the power system blockset in MATLAB/SIMULINK software. The simulation results show that the fuzzy adaptive PID control method can effectively limit the motor starting current and it is better than the control effect of traditional PID control. Therefore, the fuzzy adaptive PID control scheme presented in this paper is correct and feasible.


Sign in / Sign up

Export Citation Format

Share Document