A smart portable ECG monitoring system with high precision and low power consumption

2021 ◽  
pp. 1-11
Author(s):  
Baodan Bai ◽  
Yufang Zhao ◽  
Xinrong Chen ◽  
Yingmin Chen ◽  
Zhangyuan Luo

In this paper, a smart low-power wearable ECG monitoring and analyzing system which has an advanced architecture and low power consumption has been developed. There is a single channel ECG monitor that removes all loose wires from the system and minimizes the footprint on the user, ECG data can be continuously monitored for up to 14 days without affecting daily life. In addition, Bluetooth low energy (BLE), smartphone APP, analysis software and management platform have been added to the system for remote monitoring and whole process of heart health management. Clinical test to compare our wearable monitor with the Holter recorder are conducted on 108 groups under different ambulatory conditions. The results confirmed that it is equivalent to Holter in the clinical diagnosis of arrhythmia. This system can free patients from the short-range monitoring with lead wire entanglement to realize the long-term detection in daily life, early detection and early intervention; more convenient connections between patients and doctors, efficient use of medical resources, remote monitoring to reduce the burden of the medical and health system.

2012 ◽  
Vol 198-199 ◽  
pp. 1603-1608
Author(s):  
Qing Hua Shang ◽  
Ping Liu

Wireless technology has walked into the People's Daily life, Bluetooth technology comes to the fore in so many wireless technologies with its low power consumption, low cost and other characteristics. Bluetooth technology is used widely, we can see it in mobile phones or in our cars, it seems that Bluetooth technology has penetrated into every aspect of our lives. Even so, the combination of Bluetooth technology and fixed telephone still has a very big development space. If the stability of the fixed telephone combined with the flexible of Bluetooth technology, it will give the life of people a lot of convenience. This paper will introduces the Bluetooth hands free system for fixed telephone, it is such a product that it will make Bluetooth technology and common fixed phone combined, and make it a reality that people can use common Bluetooth headset to answer or call a fixed telephone.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 535
Author(s):  
Antonia Silvestri ◽  
Nicola Di Trani ◽  
Giancarlo Canavese ◽  
Paolo Motto Ros ◽  
Leonardo Iannucci ◽  
...  

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document