Generalized non-monotonic Lyapunov functions for analysis and synthesis of Takagi-Sugeno fuzzy systems

2020 ◽  
Vol 39 (3) ◽  
pp. 4147-4158
Author(s):  
Pedro H.S. Coutinho ◽  
Márcia L.C. Peixoto ◽  
Márcio J. Lacerda ◽  
Miguel Bernal ◽  
Reinaldo M. Palhares

This paper presents new stability and stabilisation conditions in the form of linear matrix inequalities for discrete-time Takagi-Sugeno fuzzy systems; they are derived considering a class of non-quadratic Lyapunov functions with multi-parametric non-monotonic terms, which significantly enhances the feasibility set of current state-of-the-art results. In addition, extensions to cope with the disturbance attenuation control problem are included. Benchmark numerical examples are provided to illustrate the effectiveness of the proposed approach.

2007 ◽  
Vol 16 (03) ◽  
pp. 545-552 ◽  
Author(s):  
CHENG-WU CHEN ◽  
CHEN-LIANG LIN ◽  
CHUNG-HUNG TSAI ◽  
CHEN-YUAN CHEN ◽  
KEN YEH

This study presents an H∞ controller design for time-delay T-S fuzzy systems based on the fuzzy Lyapunov method, which is defined in terms of fuzzy blending quadratic Lyapunov functions. The delay-dependent robust stability criterion is derived in terms of the fuzzy Lyapunov method to guarantee the stability of time-delay T-S fuzzy systems subjected to disturbances. Based on the delay-dependent condition and parallel distributed compensation (PDC) scheme, the controller design problem is transformed into solving linear matrix inequalities (LMI).


Author(s):  
Natache S. D. Arrifano ◽  
Vilma A. Oliveira ◽  
Lúcia V. Cossi

A new stability analysis and design of a fuzzy switching control based on uncertain Takagi-Sugeno fuzzy systems are proposed. The fuzzy system adopted is composed by a family of local linear uncertain systems with aggregation. The control design proposed uses local state feedback gains obtained from an optimization problem with guaranteed cost performance formulated in the context of linear matrix inequalities and a fuzzy switching scheme built from local Lyapunov functions. The global stability is guaranteed by considering a class of piecewise quadratic Lyapunov functions. Examples are given to illustrate the applicability of the proposed approach.


2014 ◽  
Vol 536-537 ◽  
pp. 1187-1190
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

This paper investigates a representation model, namely, a discrete-time switched fuzzy system. In this model, a system is a switched system whose subsystems are all discrete-time Takagi-Sugeno (T-S) fuzzy systems. For the proposed discrete-time switched fuzzy system is built to ensure that the relevant system is asymptotically stable by Arbitrary Switching and the Lyapunov functions method. The main conditions are given in form of linear matrix inequalities (LMIs), which are easily solvable. The elaborated illustrative examples and the respective simulation experiments demonstrate the effectiveness of the proposed method.


Author(s):  
Ibtissem Abdelmalek ◽  
Noureddine Goléa ◽  
Mohamed Hadjili

A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy ModelsIn this paper, new non-quadratic stability conditions are derived based on the parallel distributed compensation scheme to stabilize Takagi-Sugeno (T-S) fuzzy systems. We use a non-quadratic Lyapunov function as a fuzzy mixture of multiple quadratic Lyapunov functions. The quadratic Lyapunov functions share the same membership functions with the T-S fuzzy model. The stability conditions we propose are less conservative and stabilize also fuzzy systems which do not admit a quadratic stabilization. The proposed approach is based on two assumptions. The first one relates to a proportional relation between multiple Lyapunov functions and the second one considers an upper bound to the time derivative of the premise membership functions. To illustrate the advantages of our proposal, four examples are given.


2013 ◽  
Vol 415 ◽  
pp. 259-266
Author(s):  
Peng Lin ◽  
Gang Hu

In this paper, the admissible conditions (regular, impulse-free and stable) for a class of continuous-time Takagi-Sugeno (T-S) fuzzy descriptor systems are investigated. Sufficient admissible conditions for the closed-loop systems under non-parallel distributed compensation (non-PDC) feedback are proposed. This approach is mainly based on the state space division properly to make the membership functions continuous differentiable. Moreover, in order to make good use of the systems’ structural information in rules, the provided conditions are obtained through fuzzy Lyapunov functions candidate and can be formulated in terms of dilated Linear Matrix Inequalities (LMIs). Finally, the effectiveness of the proposed approach is shown through numerical example by using the optimization toolbox.


2021 ◽  
Vol 297 ◽  
pp. 01035
Author(s):  
Rachid Naoual ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper deals with the problem of H∞ model reduction for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems described by Fornasini-Marchesini local state-space (FM LSS) models, over finite frequency (FF) domain. New design conditions guaranteeing the FF H∞ model reduction are established in terms of Linear Matrix Inequalities (LMIs). To highlight the effectiveness of the proposed H∞ model reduction design, a numerical example is given.


2006 ◽  
Vol 48 (2) ◽  
pp. 259-270
Author(s):  
Xinzhi Liu ◽  
Hongtao Zhang

AbstractThis paper studies a class of impulsive switched systems with persistent bounded disturbance using robust attractor analysis and multiple Lyapunov functions. Some sufficient conditions for internal stability of the systems are obtained in terms of linear matrix inequalities (LMI). Based on the results, a simple approach for the design of a feedback controller is presented to achieve a desired level of disturbance attenuation. Numerical examples are also worked out to illustrate the obtained results.


2020 ◽  
Vol 42 (16) ◽  
pp. 3234-3242
Author(s):  
Mohamed Aatabe ◽  
Fatima El Guezar ◽  
Hassane Bouzahir ◽  
Alessandro N Vargas

This paper presents a stabilization control for positive, Takagi-Sugeno fuzzy systems subject to Markov jump parameters. In the continuous-time formulation, the approach guarantees mean-square stability with constraints on the control—the main condition hinges upon linear matrix inequalities. The proposed method’s usefulness is illustrated by a practical-oriented example, which was designed to control the output voltage of a DC-DC boost converter subject to both voltage and load variations driven by a Markov chain.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Ken Yeh ◽  
Cheng-Wu Chen

The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist ofJinterconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.


Sign in / Sign up

Export Citation Format

Share Document