Recaptured image detection through multi-resolution residual-based correlation coefficients

2020 ◽  
pp. 1-13
Author(s):  
Nan Zhu ◽  
Yuting Yin

With the great development of image display technologies and the widespread use of various image acquisition device, recapturing high-quality images from high-fidelity LCD (liquid crystal display) screens becomes relatively convenient. These recaptured images pose serious threats on image forensic technologies and bio-authentication systems. In order to prevent the security loophole of image recapture attack, we propose a recaptured image detection method based on multi-resolution residual-based correlation coefficients. Specifically, we first classify the divided image blocks into three categories according to their content complexity. Then, for each classified block, sharpness degree is used as metric to select the local representative block. Finally, pixel-wise correlation coefficients in the residual of the local representative blocks are adopted as features for training and testing. Single database experiments demonstrate that our proposed method not only performs very close to the state-of-the-art methods on relative low-quality NTU-ROSE and BJTU-IIS databases, but also improves the performance on the most difficult-to-detect ICL-COMMSP database obviously, which verifies the effectiveness of the proposed multi-resolution strategy and the used residual-based correlation coefficients. Besides, mixed database experiments verify the superiority of the generalization ability of our proposed method. Moreover, it is robust to JPEG compression.

2021 ◽  
pp. 1-16
Author(s):  
Ibtissem Gasmi ◽  
Mohamed Walid Azizi ◽  
Hassina Seridi-Bouchelaghem ◽  
Nabiha Azizi ◽  
Samir Brahim Belhaouari

Context-Aware Recommender System (CARS) suggests more relevant services by adapting them to the user’s specific context situation. Nevertheless, the use of many contextual factors can increase data sparsity while few context parameters fail to introduce the contextual effects in recommendations. Moreover, several CARSs are based on similarity algorithms, such as cosine and Pearson correlation coefficients. These methods are not very effective in the sparse datasets. This paper presents a context-aware model to integrate contextual factors into prediction process when there are insufficient co-rated items. The proposed algorithm uses Latent Dirichlet Allocation (LDA) to learn the latent interests of users from the textual descriptions of items. Then, it integrates both the explicit contextual factors and their degree of importance in the prediction process by introducing a weighting function. Indeed, the PSO algorithm is employed to learn and optimize weights of these features. The results on the Movielens 1 M dataset show that the proposed model can achieve an F-measure of 45.51% with precision as 68.64%. Furthermore, the enhancement in MAE and RMSE can respectively reach 41.63% and 39.69% compared with the state-of-the-art techniques.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Anselmo Ferreira ◽  
Ehsan Nowroozi ◽  
Mauro Barni

The possibility of carrying out a meaningful forensic analysis on printed and scanned images plays a major role in many applications. First of all, printed documents are often associated with criminal activities, such as terrorist plans, child pornography, and even fake packages. Additionally, printing and scanning can be used to hide the traces of image manipulation or the synthetic nature of images, since the artifacts commonly found in manipulated and synthetic images are gone after the images are printed and scanned. A problem hindering research in this area is the lack of large scale reference datasets to be used for algorithm development and benchmarking. Motivated by this issue, we present a new dataset composed of a large number of synthetic and natural printed face images. To highlight the difficulties associated with the analysis of the images of the dataset, we carried out an extensive set of experiments comparing several printer attribution methods. We also verified that state-of-the-art methods to distinguish natural and synthetic face images fail when applied to print and scanned images. We envision that the availability of the new dataset and the preliminary experiments we carried out will motivate and facilitate further research in this area.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 567
Author(s):  
Donghun Yang ◽  
Kien Mai Mai Ngoc ◽  
Iksoo Shin ◽  
Kyong-Ha Lee ◽  
Myunggwon Hwang

To design an efficient deep learning model that can be used in the real-world, it is important to detect out-of-distribution (OOD) data well. Various studies have been conducted to solve the OOD problem. The current state-of-the-art approach uses a confidence score based on the Mahalanobis distance in a feature space. Although it outperformed the previous approaches, the results were sensitive to the quality of the trained model and the dataset complexity. Herein, we propose a novel OOD detection method that can train more efficient feature space for OOD detection. The proposed method uses an ensemble of the features trained using the softmax-based classifier and the network based on distance metric learning (DML). Through the complementary interaction of these two networks, the trained feature space has a more clumped distribution and can fit well on the Gaussian distribution by class. Therefore, OOD data can be efficiently detected by setting a threshold in the trained feature space. To evaluate the proposed method, we applied our method to various combinations of image datasets. The results show that the overall performance of the proposed approach is superior to those of other methods, including the state-of-the-art approach, on any combination of datasets.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


Author(s):  
Pengcheng Wang ◽  
Jonathan Rowe ◽  
Wookhee Min ◽  
Bradford Mott ◽  
James Lester

Interactive narrative planning offers significant potential for creating adaptive gameplay experiences. While data-driven techniques have been devised that utilize player interaction data to induce policies for interactive narrative planners, they require enormously large gameplay datasets. A promising approach to addressing this challenge is creating simulated players whose behaviors closely approximate those of human players. In this paper, we propose a novel approach to generating high-fidelity simulated players based on deep recurrent highway networks and deep convolutional networks. Empirical results demonstrate that the proposed models significantly outperform the prior state-of-the-art in generating high-fidelity simulated player models that accurately imitate human players’ narrative interactions. Using the high-fidelity simulated player models, we show the advantage of more exploratory reinforcement learning methods for deriving generalizable narrative adaptation policies.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3096
Author(s):  
Zhen Zhang ◽  
Shihao Xia ◽  
Yuxing Cai ◽  
Cuimei Yang ◽  
Shaoning Zeng

Blockage of pedestrians will cause inaccurate people counting, and people’s heads are easily blocked by each other in crowded occasions. To reduce missed detections as much as possible and improve the capability of the detection model, this paper proposes a new people counting method, named Soft-YoloV4, by attenuating the score of adjacent detection frames to prevent the occurrence of missed detection. The proposed Soft-YoloV4 improves the accuracy of people counting and reduces the incorrect elimination of the detection frames when heads are blocked by each other. Compared with the state-of-the-art YoloV4, the AP value of the proposed head detection method is increased from 88.52 to 90.54%. The Soft-YoloV4 model has much higher robustness and a lower missed detection rate for head detection, and therefore it dramatically improves the accuracy of people counting.


2021 ◽  
Vol 57 (8) ◽  
pp. 321-323
Author(s):  
Wenjie Wang ◽  
Mengling He ◽  
Xiaohua Wang ◽  
Weiming Yao

2018 ◽  
Author(s):  
John P Wilson

This paper summarizes the current state-of-the-art in geomorphometry and describes the innovations that are close at hand and will be required to push digital terrain modeling forward in the future. These innovations will draw on concepts and methods from computer science and the spatial sciences and require greater collaboration to produce “actionable” knowledge and outcomes. The key innovations include rediscovering and using what we already know, developing new digital terrain modeling methods, clarifying and strengthening the role of theory, developing high-fidelity DEMs, developing and embracing new visualization methods, adopting new computational approaches, and making better use of provenance, credibility, and application-content knowledge.


Sign in / Sign up

Export Citation Format

Share Document