Forecasting public bicycle rental demand using an optimized eXtreme Gradient Boosting model

2021 ◽  
pp. 1-19
Author(s):  
Yuanjiao Hu ◽  
Zhaoyun Sun ◽  
Wei Li ◽  
Lili Pei

The rational distribution of public bicycle rental fleets is crucial for improving the efficiency of public bicycle programs. The accurate prediction of the demand for public bicycles is critical to improve bicycle utilization. To overcome the shortcomings of traditional algorithms such as low prediction accuracy and poor stability, using the 2011–2012 hourly bicycle rental data provided by the Washington City Bicycle Rental System, this study aims to develop an optimized and innovative public bicycle demand forecasting model based on grid search and eXtreme Gradient Boosting (XGBoost) algorithm. First, the feature ranking method based on machine learning models is used to analyze feature importance on the original data. In addition, a public bicycle demand forecast model is established based on important factors affecting bicycle utilization. Finally, to predict bicycle demand accurately, this study optimizes the model parameters through a grid search (GS) algorithm and builds a new prediction model based on the optimal parameters. The results show that the optimized XGBoost model based on the grid search algorithm can predict the bicycle demand more accurately than other models. The optimized model has an R-Squared of 0.947, and a root mean squared logarithmic error of 0.495. The results can be used for the effective management and reasonable dispatch of public bicycles.

2012 ◽  
Vol 12 (12) ◽  
pp. 3719-3732 ◽  
Author(s):  
L. Mediero ◽  
L. Garrote ◽  
A. Chavez-Jimenez

Abstract. Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.


2021 ◽  
Vol 11 (18) ◽  
pp. 8612
Author(s):  
Santanu Kumar Dash ◽  
Michele Roccotelli ◽  
Rasmi Ranjan Khansama ◽  
Maria Pia Fanti ◽  
Agostino Marcello Mangini

The long-term electricity demand forecast of the consumer utilization is essential for the energy provider to analyze the future demand and for the accurate management of demand response. Forecasting the consumer electricity demand with efficient and accurate strategies will help the energy provider to optimally plan generation points, such as solar and wind, and produce energy accordingly to reduce the rate of depletion. Various demand forecasting models have been developed and implemented in the literature. However, an efficient and accurate forecasting model is required to study the daily consumption of the consumers from their historical data and forecast the necessary energy demand from the consumer’s side. The proposed recurrent neural network gradient boosting regression tree (RNN-GBRT) forecasting technique allows one to reduce the demand for electricity by studying the daily usage pattern of consumers, which would significantly help to cope with the accurate evaluation. The efficiency of the proposed forecasting model is compared with various conventional models. In addition, by the utilization of power consumption data, power theft detection in the distribution line is monitored to avoid financial losses by the utility provider. This paper also deals with the consumer’s energy analysis, useful in tracking the data consistency to detect any kind of abnormal and sudden change in the meter reading, thereby distinguishing the tampering of meters and power theft. Indeed, power theft is an important issue to be addressed particularly in developing and economically lagging countries, such as India. The results obtained by the proposed methodology have been analyzed and discussed to validate their efficacy.


2013 ◽  
Vol 24 (1) ◽  
pp. 27-34
Author(s):  
G. Manuel ◽  
J.H.C. Pretorius

In the 1980s a renewed interest in artificial neural networks (ANN) has led to a wide range of applications which included demand forecasting. ANN demand forecasting algorithms were found to be preferable over parametric or also referred to as statistical based techniques. For an ANN demand forecasting algorithm, the demand may be stochastic or deterministic, linear or nonlinear. Comparative studies conducted on the two broad streams of demand forecasting methodologies, namely artificial intelligence methods and statistical methods has revealed that AI methods tend to hide the complexities of correlation analysis. In parametric methods, correlation is found by means of sometimes difficult and rigorous mathematics. Most statistical methods extract and correlate various demand elements which are usually broadly classed into weather and non-weather variables. Several models account for noise and random factors and suggest optimization techniques specific to certain model parameters. However, for an ANN algorithm, the identification of input and output vectors is critical. Predicting the future demand is conducted by observing previous demand values and how underlying factors influence the overall demand. Trend analyses are conducted on these influential variables and a medium and long term forecast model is derived. In order to perform an accurate forecast, the changes in the demand have to be defined in terms of how these input vectors correlate to the final demand. The elements of the input vectors have to be identifiable and quantifiable. This paper proposes a method known as relevance trees to identify critical elements of the input vector. The case study is of a rapid railway operator, namely the Gautrain.


2021 ◽  
Author(s):  
Anjana G Rajakumar ◽  
Avi Anthony ◽  
Vinoth Kumar

<p>Water demand predictions forms an integral part of sustainable management practices for water supply systems. Demand prediction models aides in water system maintenance, expansions, daily operational planning and in the development of an efficient decision support system based on predictive analytics. In recent years, it has also found wide application in real-time control and operation of water systems as well. However, short term water demand forecasting is a challenging problem owing to the frequent variations present in the urban water demand patterns. There are numerous methods available in literature that deals with water demand forecasting. These methods can be roughly classified into statistical and machine learning methods. The application of deep learning methods for forecasting water demands is an upcoming research area that has found immense traction due to its ability to provide accurate and scalable models. But there are only a few works which compare and review these methods when applied to a water demand dataset. Hence, the main objective of this work is the application of different commonly used deep learning methods for development of a short-term water demand forecast model for a real-world dataset. The algorithms studied in this work are (i) Multi-Layer Perceptron (MLP) (ii) Gated Recurrent Unit (GRU) (iii) Long Short-Term Memory (LSTM) (iv) Convolutional Neural Networks (CNN) and (v) the hybrid algorithm CNN-LSTM. Optimal supervised learning framework required for forecasting the one day ahead water demand for the study area is also identified. The dataset used in this study is from Hillsborough County, Florida, US. The water demand data was available for a duration of 10 months and the data frequency is about once per hour. These algorithms were evaluated based on the (1) Mean Absolute Percentage Error (MAPE) and (ii) Root Mean Squared Error (RMSE) values. Visual comparison of the predicted and true demand plots was also employed to check the prediction accuracy. It was observed that, the RMSE and MAPE values were minimal for the supervised learning framework that used the previous 24-hour data as input. Also, with respect to the forecast accuracy, CNN-LSTM performed better than the other methods for demand forecast, followed by MLP. MAPE values for the developed deep learning models ranged from 5% to 25%. The quantity, frequency and quality of data was also found to have substantial impact on the accuracy of the forecast models developed. In the CNN-LSTM based forecast model, the CNN component was found to effectively extract the inherent characteristics of historical water consumption data such as the trend and seasonality, while the LSTM part was able to reflect on the long-term historical process and future trend. Thus, its water demand prediction accuracy was improved compared to the other methods such as GRU, MLP, CNN and LSTM.</p>


2014 ◽  
Vol 641-642 ◽  
pp. 673-677
Author(s):  
Meng Tian Li ◽  
Xiang Feng Ji ◽  
Jian Zhang ◽  
Bin Ran

The research presents a long-term forecast model based on the use of a back-propagation (BP) neural network. Firstly, a brief overview of the forecast models and BP neural network model is demonstrated. Then the improved BP model based on factor analysis (FA-BP) and algorithmfor solving the model are presented. At last, a numerical case study is shown.As the current statistic yearbook only provides the volume data of Jing-Hu corridor, the notion of economical relation intensityis applied to process the original data. The results show that FA-BP neural network is effective in forecast. The proposed model providesa reference in the forefront field of integrated regional transportation planning.


2020 ◽  
Vol 10 (19) ◽  
pp. 6681 ◽  
Author(s):  
Zhizhen Liu ◽  
Hong Chen ◽  
Xiaoke Sun ◽  
Hengrui Chen

The development of the intelligent transport system has created conditions for solving the supply–demand imbalance of public transportation services. For example, forecasting the demand for online taxi-hailing could help to rebalance the resource of taxis. In this research, we introduced a method to forecast real-time online taxi-hailing demand. First, we analyze the relation between taxi demand and online taxi-hailing demand. Next, we propose six models containing different information based on backpropagation neural network (BPNN) and extreme gradient boosting (XGB) to forecast online taxi-hailing demand. Finally, we present a real-time online taxi-hailing demand forecasting model considering the projected taxi demand (“PTX”). The results indicate that including more information leads to better prediction performance, and the results show that including the information of projected taxi demand leads to a reduction of MAPE from 0.190 to 0.183 and an RMSE reduction from 23.921 to 21.050, and it increases R2 from 0.845 to 0.853. The analysis indicates the demand regularity of online taxi-hailing and taxi, and the experiment realizes real-time prediction of online taxi-hailing by considering the projected taxi demand. The proposed method can help to schedule online taxi-hailing resources in advance.


2014 ◽  
Vol 587-589 ◽  
pp. 1753-1756
Author(s):  
Jing Fei Yu ◽  
Xiu Ling Gong ◽  
Xin Jie Zhang

Parking is difficult in today's social problems faced by big cities. To solve this problem, a new parking facility planning and design was required and the parking demand forecast is a very important step in this process. The paper first discusses the necessity of parking demand forecast and the development process of parking demand forecast model, then a few parking demand forecasting model were compared and analyzed, final the motor vehicle OD method was selected to forecast parking demand according to the characteristics of the parking demand forecast and urban transport planning simultaneously. The results show that the precision of prediction results is acceptable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jari Turkia ◽  
Lauri Mehtätalo ◽  
Ursula Schwab ◽  
Ville Hautamäki

AbstractNutrition experts know by their experience that people can react very differently to the same nutrition. If we could systematically quantify these differences, it would enable more personal dietary understanding and guidance. This work proposes a mixed-effect Bayesian network as a method for modeling the multivariate system of nutrition effects. Estimation of this network reveals a system of both population-wide and personal correlations between nutrients and their biological responses. Fully Bayesian estimation in the method allows managing the uncertainty in parameters and incorporating the existing nutritional knowledge into the model. The method is evaluated by modeling data from a dietary intervention study, called Sysdimet, which contains personal observations from food records and the corresponding fasting concentrations of blood cholesterol, glucose, and insulin. The model’s usefulness in nutritional guidance is evaluated by predicting personally if a given diet increases or decreases future levels of concentrations. The proposed method is shown to be comparable with the well-performing Extreme Gradient Boosting (XGBoost) decision tree method in classifying the directions of concentration increases and decreases. In addition to classification, we can also predict the precise concentration level and use the biologically interpretable model parameters to understand what personal effects contribute to the concentration. We found considerable personal differences in the contributing nutrients, and while these nutritional effects are previously known at a population level, recognizing their personal differences would result in more accurate estimates and more effective nutritional guidance.


Sign in / Sign up

Export Citation Format

Share Document