Synthesis, structures and properties of Cd(II) supramolecular compound based on nitrogen heterocyclic cation

2020 ◽  
Vol 19 (3) ◽  
pp. 199-206
Author(s):  
Xin-Jing Liu ◽  
Xiu-Ying Qiao ◽  
Yun-Yin Niu

A novel supramolecular compound {(L1) [CdI4]} (L1 = 1-(3-(((1 s,3R,5S)-1,3,5,7,tetraazaadamantan-1-ium-1-yl)methyl)benzyl)-1,3,5,7,-tetraazaadamantan-1-ium) was synthesized from CdI2 and L1 by self-assembly reaction in solution. Its structure was analyzed by X-ray diffraction, and X-ray crystallography showed that the crystal was mononuclear. The compound was characterized by UV, TG, photocatalysis and adsorption.


2017 ◽  
Vol 73 (4) ◽  
pp. 314-318 ◽  
Author(s):  
Xu Wei ◽  
Jian-Hua Li ◽  
Qiu-Ying Huang ◽  
Xiang-Ru Meng

The unsymmetrical N-heterocyclic ligand 1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole (bmi) has three potential N-atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole-κN3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole-κN3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self-assembly of bmi with HgBr2or HgI2. Single-crystal X-ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgIIions in monodentate modes. In the solid state, both complexes display three-dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.



2019 ◽  
Vol 75 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Zhen Chen ◽  
Yanwen Sun ◽  
Zi-an Liu ◽  
Ning Wang ◽  
Xue Yang ◽  
...  

In recent years, coordination polymers constructed from multidentate carboxylate ligands and N-containing ligands have attracted much attention since these ligands can adopt a rich variety of coordination modes which can lead to crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[diaqua[μ-2,7-bis(1H-imidazol-1-yl)fluorene-κ2 N 3:N 3′][μ-5,5′-methylenebis(3-carboxy-2,4,6-trimethylbenzoato)-κ2 O 1:O 1′]zinc(II)] hemihydrate], {[Zn(C23H22O8)(C19H14N4)(H2O)2]·0.5H2O} n , 1, was prepared by the self-assembly of Zn(NO3)2·6H2O with 5,5′-methylenebis(2,4,6-trimethylisophthalic acid) (H4BTMIPA) and 2,7-bis(1H-imidazol-1-yl)fluorene (BIF) under solvothermal conditions. The structure of 1 was determined by elemental analysis, single-crystal X-ray crystallography, powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Each ZnII ion is six-coordinated by two O atoms from two H2BTMIPA2− ligands, by two N atoms from two BIF ligands and by two water molecules, forming a distorted octahedral ZnN2O4 coordination geometry. Adjacent ZnII ions are linked by H2BTMIPA2− ligands and BIF ligands, leading to the formation of a two-dimensional (2D) (4,4)-sql network, and intermolecular hydrogen-bonding interactions connect the 2D layer structure into the three-dimensional (3D) supramolecular structure. Each 2D layer contains two kinds of helices with the same direction, which are opposite in adjacent layers. The luminescence properties of complex 1 in the solid state have also been investigated.



2019 ◽  
Vol 75 (7) ◽  
pp. 990-995 ◽  
Author(s):  
Wenlong Lan ◽  
Zhen Zhou ◽  
Fu-Chao Jia ◽  
Xiaoyun Hao ◽  
Yong Dou ◽  
...  

A new coordination polymer (CP), namely poly[(μ-4,4′-bipyridine)(μ3-3,4′-oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)] n or [Co(3,4′-obb)(4,4′-bipy)] n (1), was prepared by the self-assembly of Co(NO3)2·6H2O with the rarely used 3,4′-oxydibenzoic acid (3,4′-obbH2) ligand and 4,4′-bipyridine (4,4′-bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction reveals that each CoII ion is six-coordinated by four O atoms from three 3,4′-obb2− ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′-bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′-obb2− ligands, affording an eight-membered Co2O4C2 ring which is further extended into a two-dimensional [Co(3,4′-obb)] n sheet along the ab plane via 3,4′-obb2− functioning as a bidentate bridging ligand. The planes are interlinked into a three-dimensional [Co(3,4′-obb)(4,4′-bipy)] n network by 4,4′-bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′-bipy ligands.



Author(s):  
P. Vojtíšek ◽  
I. Císařová ◽  
J. Podlaha ◽  
Z. Žák ◽  
S. Böhm ◽  
...  

AbstractCrystal structures of the title compounds were determined by single crystal X-ray diffraction. Absolute configuration of the barium salt of (+)-(



2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.



2009 ◽  
Vol 13 (01) ◽  
pp. 60-69 ◽  
Author(s):  
Jonathan P. Hill ◽  
Katsuhiko Ariga ◽  
Francis D'Souza

The structure and physical properties of a series of N-substituted, hemiquinone-substituted oxoporphyrinogens is presented and discussed. Structures of the compounds are dictated by the nature of the substituent, with the substitution pattern being in turn dictated by regioselectivity of N-alkylation. X-ray crystallography and other aggregation properties of the compounds are discussed. Redox reactions are also strongly influenced by N-substitution and substituent identity. Also presented are properties related to guest binding and photophysical properties of oligochromophoric host-guest complexes, involving oxoporphyrinogen, N-substituted with porphyrins and appropriately substituted fullerene guest electron acceptors.



2013 ◽  
Vol 401-403 ◽  
pp. 663-666
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Zhong Guo Mu ◽  
Yun Bai

Polyaniline (PANI) nanotubes were synthesized separately using amino acetic acid (AA), ethylenediamine tetraacetic acid (EDTA), oxalic acid (OA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. SEM, TEM,FTIR and X-ray diffraction (XRD) and applying the 4 probes method characterized the morphology, structure and property of the product. It was found that nanotubes morphology were synthesized when the [Aci/[A ratio is 1:2.The room template conductivity of the products were studied.



2003 ◽  
Vol 81 (7) ◽  
pp. 825-831 ◽  
Author(s):  
Chunlin Ma ◽  
Qin Jiang ◽  
Rufen Zhang

The new organotin compound, Ph2Sn(Cl)[S(C7H3N2O2S)]·[(C7H3N2O2S)OEt], assembled by an intermolecular aromatic benzothiazole–benzothiazole π-π stacking interaction, has been synthesized by the reaction of diphenyltin dichloride with 2-mercapto-6-nitrobenzothiazole. The title compound was characterized by elemental, IR, 1H NMR, and X-ray crystallography analyses. Single-crystal X-ray diffraction data reveals that the title compound has two different molecular components. The component Ph2Sn(Cl)[S(C7H3N2O2S)] has a pentacoordinate tin, which further forms an infinite one-dimensional chain by intermolecular non-bonded Cl···S interactions, resulting in an intercalation lattice that holds (C7H3N2O2S)OEt molecules. The formation of the molecule (C7H3N2O2S)OEt as well as its intercalated mechanism has also been discussed.Key words: organotin, assemble, π-π stacking interaction, 2-mercapto-6-nitrobenzothiazole, non-bonded interaction, crystal structure.



Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 732
Author(s):  
Alexander A. Bredikhin ◽  
Aidar T. Gubaidullin ◽  
Zemfira A. Bredikhina ◽  
Robert R. Fayzullin ◽  
Olga A. Lodochnikova

Chiral recognition plays an important role in the self-assembly of soft materials, in particular supramolecular organogels formed by low molecular weight gelators (LMWGs). Out of 14 pairs of the studied racemic and enantiopure samples of alkyl-substituted phenyl ethers of glycerol, only eight enantiopure diols form the stable gels in nonane. The formation of gels from solutions was studied by polarimetry, and their degradation with the formation of xerogels was studied by the PXRD method. The revealed crystalline characteristics of all studied xerogels corresponded to those for crystalline samples of the parent gelators. In addition to those previously investigated, crystalline samples of enantiopure para-n-alkylphenyl glycerol ethers [alkyl = pentyl (5), hexyl (6), heptyl (7), octyl (8), nonyl (9)] and racemic 3-(3,5-dimethylphenoxy)propane-1,2-diol (rac-14) have been examined by single crystal X-ray diffraction analysis. Among 22 samples of compounds 1-14 studied by SC-XRD, seven different types of supramolecular motifs are identified, of which only two are realized in crystals of supramolecular gelators. An attempt was made to relate the ability to gel formation with the characteristics of the supramolecular motif of a potential gelling agent, and the frequency of formation of the motif, required for gelation, with the chiral characteristics of the sample.



2014 ◽  
Vol 70 (a1) ◽  
pp. C157-C157
Author(s):  
Claire Hobday ◽  
Stephen Moggach ◽  
Carole Morrison ◽  
Tina Duren ◽  
Ross Forgan

Metal-organic frameworks (MOFs) are a well-studied class of porous materials with the potential to be used in many applications such as gas storage and catalysis.[1] UiO-67 (UiO = University of Oslo), a MOF built from zirconium oxide units connected with 4,4-biphenyldicarboxylate (BDC) linkers, forms a face centred cubic structure. Zirconium has a high affinity towards oxygen ligands making these bridges very strong, resulting in UiO-based MOFs having high chemical and thermal stability compared to other MOF structures. Moreover, UiO-67 has become popular in engineering studies due to its high mechanical stability.[2] Using high pressure x-ray crystallography we can exert MOFs to GPa pressures, experimentally exploring the mechanical stability of MOFs to external pressure. By immersing the crystal in a hydrostatic medium, pressure is applied evenly to the crystal. On surrounding a porous MOF with a hydrostatic medium composed of small molecules (e.g. methanol), the medium can penetrate the MOF, resulting in medium-dependant compression. On compressing MOF-5 (Zn4O(BDC)3) using diethylformamide as a penetrating medium, the framework was shown to have an increased resistance to compression, becoming amorphous several orders of magnitude higher in pressure than observed on grinding the sample.[3] Here we present a high-pressure x-ray diffraction study on the UiO-based MOF UiO-67, and several new synthesised derivatives built from same metal node but with altered organic linkers, allowing us to study in a systematic way, the mechanical stability of the MOF, and its pressure dependence on both the linker, and pressure medium.



Sign in / Sign up

Export Citation Format

Share Document