scholarly journals Chirality, Gelation Ability and Crystal Structure: Together or Apart? Alkyl Phenyl Ethers of Glycerol as Simple LMWGs

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 732
Author(s):  
Alexander A. Bredikhin ◽  
Aidar T. Gubaidullin ◽  
Zemfira A. Bredikhina ◽  
Robert R. Fayzullin ◽  
Olga A. Lodochnikova

Chiral recognition plays an important role in the self-assembly of soft materials, in particular supramolecular organogels formed by low molecular weight gelators (LMWGs). Out of 14 pairs of the studied racemic and enantiopure samples of alkyl-substituted phenyl ethers of glycerol, only eight enantiopure diols form the stable gels in nonane. The formation of gels from solutions was studied by polarimetry, and their degradation with the formation of xerogels was studied by the PXRD method. The revealed crystalline characteristics of all studied xerogels corresponded to those for crystalline samples of the parent gelators. In addition to those previously investigated, crystalline samples of enantiopure para-n-alkylphenyl glycerol ethers [alkyl = pentyl (5), hexyl (6), heptyl (7), octyl (8), nonyl (9)] and racemic 3-(3,5-dimethylphenoxy)propane-1,2-diol (rac-14) have been examined by single crystal X-ray diffraction analysis. Among 22 samples of compounds 1-14 studied by SC-XRD, seven different types of supramolecular motifs are identified, of which only two are realized in crystals of supramolecular gelators. An attempt was made to relate the ability to gel formation with the characteristics of the supramolecular motif of a potential gelling agent, and the frequency of formation of the motif, required for gelation, with the chiral characteristics of the sample.

2011 ◽  
Vol 7 ◽  
pp. 234-242 ◽  
Author(s):  
Guijun Wang ◽  
Hao Yang ◽  
Sherwin Cheuk ◽  
Sherman Coleman

Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators are interesting soft materials that show great potential for many applications. Previously, we have synthesized a series of methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives and found that several of them are good gelators for water, aqueous mixtures of DMSO, or aqueous mixtures of ethanol. The gelation efficiency of these glycolipid derivatives is dependent upon the structures of their acyl chains. In order to understand the influence of the anomeric position of the sugar headgroup towards self-assembly, we synthesized a series of 1-deoxyglucose analogs, and examined their gelation properties in several solvents. Several long chain esters, including diacetylene containing esters, and aryl esters exhibited gelation in ethanol, aqueous ethanol, or aqueous DMSO. The synthesis and characterization of these novel analogs are reported.


2000 ◽  
Vol 65 (8) ◽  
pp. 1273-1288 ◽  
Author(s):  
Jaroslav Podlaha ◽  
Ivana Císařová ◽  
Ludmila Soukupová ◽  
Jan Schraml

Crystal structure of benzohydroxamic acid and its ring-substituted derivatives RC6H4C(O)NHOH (R = 4-Me, 4-NO2, 4-Cl, 3-Cl and 2-Cl) was determined by single-crystal X-ray diffraction. In all the compounds, the hydroxamic group is in the planar amide form and the structures differ mainly in the tilt of the aromatic and hydroxamic acid planes. For the 2-chloro derivative, the dihedral angle of the two planes is 46.1° which corresponds to the intramolecular van der Waals contact of the ortho-substituents. In other compounds, the tilt originates from intermolecular hydrogen bonding and varies between 3.5 and 22.0°; four crystallographically independent molecules present in the structure of benzohydroxamic acid also differ significantly in this tilt, as well as three independent molecules of the 4-nitro derivative do. Although there are only two types of hydrogen bonding in all the compounds, a short one between OH and O-N and a second longer between NH and O=C, bonded network in the crystal is of three different types. In unsubstituted acid, its 4-Me, 4-Cl and 3-Cl derivative, the molecules are assembled into hydrogen-bonded layers stacked loosely along the largest cell parameter. As a result of the large tilt of the molecular planes in the 2-Cl compound, its molecules are linked into chains with unusual, strongly bent orientation of the aromatic groups. The self-assembly of the remaining 4-nitro compound is quite unique, consisting of pseudohexagonal, partly interpenetrating stacks. In several cases, the hydrogen bonding is supported by π-interaction of the aromatic rings.


2021 ◽  
Vol 03 (01) ◽  
pp. 025-040
Author(s):  
Chih-Wei Chu ◽  
Christoph A. Schalley

Gels prepared from low-molecular-weight gelators (LMWGs) represent versatile soft materials. Self-assembly of LMWGs forms nanofibers and above critical gelation concentrations, the entanglement of which leads to self-supporting gels. Owing to the dynamic properties of the self-assembly process, stimuli-responsive LMWGs have prospered in the last decade. In addition, incorporating multiple LMWGs into one system brings the opportunity to achieve sophisticated designs and functions. This review covers recent advances in the field of supramolecular gels, from stimuli-responsive gelators to multicomponent systems that are self-sorting and/or co-assembling.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Adrian Szewczyk ◽  
Adrianna Skwira ◽  
Marta Ginter ◽  
Donata Tajer ◽  
Magdalena Prokopowicz

Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.


Author(s):  
P. Vojtíšek ◽  
I. Císařová ◽  
J. Podlaha ◽  
Z. Žák ◽  
S. Böhm ◽  
...  

AbstractCrystal structures of the title compounds were determined by single crystal X-ray diffraction. Absolute configuration of the barium salt of (+)-(


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


Author(s):  
Peng Liu ◽  
Hongbin Zhang ◽  
Sinong Wang ◽  
Hui Yu ◽  
Bingjie Lu ◽  
...  

AbstractThe crystallinity indices (CrI) of Chinese handmade papers were investigated using the X-ray diffraction (XRD) method. Four Chinese handmade papers, Yingchun, Zhuma, Yuanshu and Longxucao papers were used as model substrates of mulberry bark, ramie, bamboo and Eulaliopsis binata papers, respectively. Two forms of the paper samples, paper sheets and their comminuted powders, were used in this study. The results showed that their XRD patterns belong to the cellulose-I type and Iβ dominates the cellulose microstructure of these paper samples. Moreover, it was found that the microstructures and CrIs of cellulose of these papers were changed by the grinding treatment. This work suggested that the sheet form of the handmade papers is suitable to determine CrI by XRD, despite the contribution of non-cellulosic components in the papers. The order of CrIs for these paper sheet samples was Yingchun, Zhuma, Longxucao and Yuanshu papers. Besides CrIs, differences in cross-sectional areas of the crystalline zone of cellulose can be used for comparing different types of handmade papers. It was also found that the CrIs and crystallite size of paper cellulose varied between the sheet samples and the powder samples, illustrating that the pulverisation has a negative influence on the microstructure of the handmade papers.


2013 ◽  
Vol 401-403 ◽  
pp. 663-666
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Zhong Guo Mu ◽  
Yun Bai

Polyaniline (PANI) nanotubes were synthesized separately using amino acetic acid (AA), ethylenediamine tetraacetic acid (EDTA), oxalic acid (OA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. SEM, TEM,FTIR and X-ray diffraction (XRD) and applying the 4 probes method characterized the morphology, structure and property of the product. It was found that nanotubes morphology were synthesized when the [Aci/[A ratio is 1:2.The room template conductivity of the products were studied.


Sign in / Sign up

Export Citation Format

Share Document