Preparation and Characterization of Polyaniline Nanotubes Doped with Different Acid

2013 ◽  
Vol 401-403 ◽  
pp. 663-666
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Zhong Guo Mu ◽  
Yun Bai

Polyaniline (PANI) nanotubes were synthesized separately using amino acetic acid (AA), ethylenediamine tetraacetic acid (EDTA), oxalic acid (OA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. SEM, TEM,FTIR and X-ray diffraction (XRD) and applying the 4 probes method characterized the morphology, structure and property of the product. It was found that nanotubes morphology were synthesized when the [Aci/[A ratio is 1:2.The room template conductivity of the products were studied.

2012 ◽  
Vol 184-185 ◽  
pp. 1285-1288 ◽  
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Yun Bai ◽  
Zhong Guo Mu

Doped polyaniline (PANI) nanostructure has been prepared at room temperature using amino acetic acid (AA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. The structure and property of polyaniline nanostructure were characterized by SEM, TEM,IR and X-ray diffraction (XRD) and applying the 4 probes method. The results showed the production was PANI. The effect of molar ratio of AA to An affected the morphology of the product and room template conductivity of the products were studied.


2006 ◽  
Vol 959 ◽  
Author(s):  
Emanuela Piscopiello ◽  
Leander Tapfer ◽  
Marco Vittori Antisari ◽  
Pasquale Paiano ◽  
Paola Prete ◽  
...  

ABSTRACTThis work reports on the structural characterization of Au nanocrystals directly prepared on the surface of (100)Si and 150 nm-thick SiO2 deposited (100)Si substrates, by a physical self-assembly method, consisting in the UHV evaporation of a thin Au film and its successive high temperature annealing. The morphology, orientation, and crystalline structure of Au nanocrystals were characterized by scanning and high-resolution transmission electron microscopy and X-ray diffraction, respectively. Experimental results show that the nature of the substrate strongly influences the process of Au nanocrystal formation upon heat treatment, by affecting the interaction of deposited Au with the underlying material. In the case of clean (100)Si substrates the Au strongly interacts with Si, so that Au nanoislands are obtained with a well defined epitaxial relationships with the substrate, i.e. [100]AuÐÐ[110]Si and [110]AuÐÐ[311]Si. The nanoisland shape is affected by faceting at the Au/Si interface, the Au nanocrystal being limited by the {111}, {311}, {711} and {-111} planes of Si. In the case of SiO2/(100)Si substrates spherical shaped Au nanoparticles with random crystal orientation are instead, produced.


Author(s):  
Nguyen Duy Thien ◽  
Nguyen Ngoc Tu ◽  
Nguyen Quang Hoa ◽  
Sai Cong Doanh ◽  
Le Van Vu

In this report, we presented the usage of Stober method to fabricate SiO2 nanospheres and self-assembly method to make SiO2 opal photonic crystals based on the fabricated SiO2 nanospheres. An averaged size of SiO2 nanospheres was controlled by varying concentrations of NH4OH and TEOS. Crystal structure and morphology of particles was investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Experimental results showed that SiO2 nanospheres possess amorphous crystal structure with sizes ranged from 150 to 300 nm. The diffuse reflection spectra show the reflection peaks of the SiO2 opal photonic crystals from 410 nm to 520 nm.  


2010 ◽  
Vol 97-101 ◽  
pp. 1091-1096
Author(s):  
Dong Fang Han ◽  
Qun Tang ◽  
Qing Meng Zhang ◽  
Lei Wang ◽  
Ju Du

The structure and property of Ce-doped Ba0.2Sr0.8TiO3 (BST) were investigated as a function of Ce content. The density experiment results confirmed that increasing the Ce doping ratio caused the decrease in shrinkage factor of BST in the sintering procedure. Additionally, both Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis showed that the grain size of Ce-doped BST was dependent on the Ce content. Further more, the dielectric constant and dielectric loss had a curve relationship with increasing Ce content. The improvement of the electrical properties of Ce doping BST may be related to the decrease in the concentration of oxygen vacancies. According to the research, the diameter of grain, the dielectric constant and loss factor of the 1mol% Ce-doped Ba0.2Sr0.8TiO3 were 500nm, 365.8 and 0.0063, respectively.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1955 ◽  
Author(s):  
Karina del Ángel-Sánchez ◽  
César I. Borbolla-Torres ◽  
Luis M. Palacios-Pineda ◽  
Nicolás A. Ulloa-Castillo ◽  
Alex Elías-Zúñiga

This paper focuses on developing, fabricating, and characterizing composite polycaprolactone (PCL) membranes reinforced with titanium dioxide nanoparticles (NPs) elaborated by using two solvents; acetic acid and a mixture of chloroform and N,N-dimethylformamide (DMF). The resulting physical, chemical, and mechanical properties of the composite materials are studied by using experimental characterization techniques such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, contact angle (CA), uniaxial and biaxial tensile tests, and surface roughness measurements. Experimental results show that the composite material synthesized by sol-gel and chloroform-DMF has a better performance than the one obtained by using acetic acid as a solvent.


2014 ◽  
Vol 953-954 ◽  
pp. 1003-1007
Author(s):  
Yu Xiu Zhang ◽  
Li Yang ◽  
Dai Mei Chen ◽  
Shuang Deng ◽  
Ying Jie Shi

Abstract. The large-pore mesoporous Bi-B-TiO2 nanoparticles with the different Bi/Ti rations were prepared by EISA(evaporation-induced self-assembly) method. The prepared catalysts were characterized by X-ray diffraction, transmission electron microscopy, N2 absorption-desorption, ultraviolet visible light spectroscopy and photoluminescence spectroscopy technologies. The results revealed that all the samples are large aperture mesoporous structures. The crystallite sizes were in the range7-11nm, as confirmed by the results obtained from TEM images. The photodecomposition experiments showed that the photodegradation activity of Bi-B-doped TiO2 was higher than that of undoped TiO2 in degradation of 2, 4–dichlorophenol under visible light irradiation.


2018 ◽  
Vol 792 ◽  
pp. 89-97
Author(s):  
Xiao Feng Zhao ◽  
Zi Li Yu ◽  
Cong Li Fu ◽  
Xiu Li Wang

For many excellent graphene derivatives, tailoring the material properties is crucial to get a broader application. In the present work, a series of fluorinated graphene oxide (FGO) with various oxidation degree were synthesized using a modified Hummers method at different reaction temperatures. The structure and property of FGO were analyzed by X-ray diffraction (XRD), Fourier transform infra-red spectra (FT-IR), X-ray photoelectron spectra (XPS) and Zeta potential analysis. The results indicate that the oxygen contents range from 5.61 % to 21.96 % in FGO can be tuned by altering the reaction temperatures. The oxygen in FGO is presented mainly in the form of epoxide and carboxyl groups. With increasing reaction temperature from 50 °C to 90 °C, the oxygen content in FGO decreases and thicker multilayered FGO is formed with lower dispersibility.


2008 ◽  
Vol 368-372 ◽  
pp. 1389-1391 ◽  
Author(s):  
Shuan Gui Qing ◽  
Bo Liu ◽  
Xun Liang ◽  
Hai Yang Li ◽  
Wei Zhong Lv ◽  
...  

Multilayer SiO2 crystals modified by alkoxysilanes were fabricated by the vertical deposition technique combined with self-assembly method. The SiO2 colloidal crystallization was prepared by the traditional Stöber-Fink-Bohn method, and modified by different alkoxysilanes to investigate the properties of the films. The films fabricated by the ordering of SiO2 spheres were investigated by infrared spectrometer, X-ray diffraction, scanning electron microscope, UV-visible spectrophotometer. The results showed that thin film is the face-centered cubic structures and the spheres are [111]-oriented.


2020 ◽  
Vol 6 (2) ◽  
pp. 686-688
Author(s):  
Phalak Mrunalini ◽  
Rajendra Waghulade ◽  
Yogesh Toda

This work reports synthesize of polypyrrole nano powder by chemical in-situ polymerization of pyrrole in aqueous solution and ammonium persulfate solution which acts as oxidant. It is characterized by X-ray diffraction (XRD), Fourier infra-red spectroscopy (FTIR) and scanning electron microscopy (SEM). The XRD spectrum reveals that the materials are amorphous in nature. FTIR analysis confirms that all peaks are the main characteristic of PPy. SEM analysis showed that the powder has a uniform granular morphology and the size varies from ∼500 nm to 1 μm. The micrograph of polypyrrole reveals the presence of globular particles. The formed particles are irregular in nature. The results show that the fibers are chemically formed as spherical nanostructures.


2013 ◽  
Vol 800 ◽  
pp. 406-410
Author(s):  
Bao Song Li ◽  
Wei Wei Zhang

Polyaniline nanotubes were prepared by electrochemical polymerization polyaniline within the pores of AAO templates and have been open on one ends. The outside diameter of these tubes is determined by the pore diameter in the template used and that the length of the tube is determined by the thickness of the template. Influencing factors include the polymerization potential, current, scanning rates and numbers, solutions. The characterization of the resulting materials was carried out by UV-vis, X-ray diffraction, cyclic voltammetry, scanning lectron microscopy and conductivity measurements.


Sign in / Sign up

Export Citation Format

Share Document