scholarly journals Semantic Anomaly Detection in Medical Time Series

Author(s):  
Sven Festag ◽  
Cord Spreckelsen

The main goal of this project was to define and evaluate a new unsupervised deep learning approach that can differentiate between normal and anomalous intervals of signals like the electrical activity of the heart (ECG). Denoising autoencoders based on recurrent neural networks with gated recurrent units were used for the semantic encoding of such time frames. A subsequent cluster analysis conducted in the code space served as the decision mechanism labelling samples as anomalies or normal intervals, respectively. The cluster ensemble method called cluster-based similarity partitioning proved itself well suited for this task when used in combination with density-based spatial clustering of applications with noise. The best performing system reached an adjusted Rand index of 0.11 on real-world ECG signals labelled by medical experts. This corresponds to a precision and recall regarding the detection task of around 0.72. The new general approach outperformed several state-of-the-art outlier recognition methods and can be applied to all kinds of (medical) time series data. It can serve as a basis for more specific detectors that work in an unsupervised fashion or that are partially guided by medical experts.

2020 ◽  
pp. 1-12
Author(s):  
Liping Li ◽  
Zean Tian ◽  
Kenli Li ◽  
Cen Chen

Anomaly detection based on time series data is of great importance in many fields. Time series data produced by man-made systems usually include two parts: monitored and exogenous data, which respectively are the detected object and the control/feedback information. In this paper, a so-called G-CNN architecture that combined the gated recurrent units (GRU) with a convolutional neural network (CNN) is proposed, which respectively focus on the monitored and exogenous data. The most important is the introduction of a complementary double-referenced thresholding approach that processes prediction errors and calculates threshold, achieving balance between the minimization of false positives and the false negatives. The outstanding performance and extensive applicability of our model is demonstrated by experiments on two public datasets from aerospace and a new server machine dataset from an Internet company. It is also found that the monitored data is close associated with the exogenous data if any, and the interpretability of the G-CNN is discussed by visualizing the intermediate output of neural networks.


Author(s):  
Praphula Jain ◽  
Mani Shankar Bajpai ◽  
Rajendra Pamula

Anomaly detection concerns identifying anomalous observations or patterns that are a deviation from the dataset's expected behaviour. The detection of anomalies has significant and practical applications in several industrial domains such as public health, finance, Information Technology (IT), security, medical, energy, and climate studies. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm is a density-based clustering algorithm with the capability of identifying anomalous data. In this paper, a modified DBSCAN algorithm is proposed for anomaly detection in time-series data with seasonality. For experimental evaluation, a monthly temperature dataset was employed and the analysis set forth the advantages of the modified DBSCAN over the standard DBSCAN algorithm for the seasonal datasets. From the result analysis, we may conclude that DBSCAN is used for finding the anomalies in a dataset but fails to find local anomalies in seasonal data. The proposed Modified DBSCAN approach helps to find both the global and local anomalies from the seasonal data. Using normal DBSCAN we are able to get 19 (2.16%) anomaly points. While using the modified approach for DBSCAN we are able to get 42 (4.79%) anomaly points. In comparison we can say that we are able to get 2.11% more anomalies using the modified DBSCAN approach. Hence, the proposed Modified DBSCAN algorithm outperforms in comparison with the DBSCAN algorithm to find local anomalies.


2021 ◽  
Vol 28 (4) ◽  
pp. 255-267
Author(s):  
Ruizhe Ma ◽  
Xiaoping Zhu ◽  
Li Yan

Information uncertainty extensively exists in the real-world applications, and uncertain data process and analysis have been a crucial issue in the area of data and knowledge engineering. In this paper, we concentrate on uncertain time series data clustering, in which the uncertain values at time points are represented by probability density function. We propose a hybrid clustering approach for uncertain time series. Our clustering approach first partitions the uncertain time series data into a set of micro-clusters and then merges the micro-clusters following the idea of hierarchical clustering. We evaluate our approach with experiments. The experimental results show that, compared with the traditional UK-means clustering algorithm, the Adjusted Rand Index (ARI) of our clustering results have an obviously higher accuracy. In addition, the time efficiency of our clustering approach is significantly improved.


Author(s):  
Marcus Erz ◽  
Jeremy Floyd Kielman ◽  
Bahar Selvi Uzun ◽  
Gabriele Stefanie Guehring

Abstract As the digital transformation is taking place, more and more data is being generated and collected.To generate meaningful information and knowledge researchers use various data mining techniques. In addition to classification, clustering, and forecasting, outlier or anomaly detection is one of the most important research areas in time series analysis. In this paper we present a method for detecting anomalies in multidimensional time series using a graph-based algorithm. We transform time series data to graphs prior to calculating the outlier since it offers a wide range of graph-based methods for anomaly detection. Furthermore the dynamics of the data is taken into consideration by implementing a window of a certain size that leads to multiple graphs in different time frames. We use feature extraction and aggregation to finally compare distance measures of two time-dependent graphs. The effectiveness of our algorithm is demonstrated on the Numenta Anomaly Benchmark with various anomaly types as well as the KPI-Anomaly-Detection data set of 2018 AIOps competition.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


Sign in / Sign up

Export Citation Format

Share Document