scholarly journals Participatory Design of a Clinical Trial Eligibility Criteria Simplification Method

Author(s):  
Yilu Fang ◽  
Jae Hyun Kim ◽  
Betina Ross Idnay ◽  
Rebeca Aragon Garcia ◽  
Carmen E. Castillo ◽  
...  

Clinical trial eligibility criteria are important for selecting the right participants for clinical trials. However, they are often complex and not computable. This paper presents the participatory design of a human-computer collaboration method for criteria simplification that includes natural language processing followed by user-centered eligibility criteria simplification. A case study on the ARCADIA trial shows how criteria were simplified for structured database querying by clinical researchers and identifies rules for criteria simplification and concept normalization.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1555-1555
Author(s):  
Eric J. Clayton ◽  
Imon Banerjee ◽  
Patrick J. Ward ◽  
Maggie D Howell ◽  
Beth Lohmueller ◽  
...  

1555 Background: Screening every patient for clinical trials is time-consuming, costly and inefficient. Developing an automated method for identifying patients who have potential disease progression, at the point where the practice first receives their radiology reports, but prior to the patient’s office visit, would greatly increase the efficiency of clinical trial operations and likely result in more patients being offered trial opportunities. Methods: Using Natural Language Processing (NLP) methodology, we developed a text parsing algorithm to automatically extract information about potential new disease or disease progression from multi-institutional, free-text radiology reports (CT, PET, bone scan, MRI or x-ray). We combined semantic dictionary mapping and machine learning techniques to normalize the linguistic and formatting variations in the text, training the XGBoost model particularly to achieve a high precision and accuracy to satisfy clinical trial screening requirements. In order to be comprehensive, we enhanced the model vocabulary using a multi-institutional dataset which includes reports from two academic institutions. Results: A dataset of 732 de-identified radiology reports were curated (two MDs agreed on potential new disease/dz progression vs stable) and the model was repeatedly re-trained for each fold where the folds were randomly selected. The final model achieved consistent precision (>0.87 precision) and accuracy (>0.87 accuracy). See the table for a summary of the results, by radiology report type. We are continuing work on the model to validate accuracy and precision using a new and unique set of reports. Conclusions: NLP systems can be used to identify patients who potentially have suffered new disease or disease progression and reduce the human effort in screening or clinical trials. Efforts are ongoing to integrate the NLP process into existing EHR reporting. New imaging reports sent via interface to the EHR will be extracted daily using a database query and will be provided via secure electronic transport to the NLP system. Patients with higher likelihood of disease progression will be automatically identified, and their reports routed to the clinical trials office for clinical trial screening parallel to physician EHR mailbox reporting. The over-arching goal of the project is to increase clinical trial enrollment. 5-fold cross-validation performance of the NLP model in terms of accuracy, precision and recall averaged across all the folds.[Table: see text]


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2300
Author(s):  
Rade Matic ◽  
Milos Kabiljo ◽  
Miodrag Zivkovic ◽  
Milan Cabarkapa

In recent years, gradual improvements in communication and connectivity technologies have enabled new technical possibilities for the adoption of chatbots across diverse sectors such as customer services, trade, and marketing. The chatbot is a platform that uses natural language processing, a subset of artificial intelligence, to find the right answer to all users’ questions and solve their problems. Advanced chatbot architecture that is extensible, scalable, and supports different services for natural language understanding (NLU) and communication channels for interactions of users has been proposed. The paper describes overall chatbot architecture and provides corresponding metamodels as well as rules for mapping between the proposed and two commonly used NLU metamodels. The proposed architecture could be easily extended with new NLU services and communication channels. Finally, two implementations of the proposed chatbot architecture are briefly demonstrated in the case study of “ADA” and “COVID-19 Info Serbia”.


10.2196/17832 ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. e17832
Author(s):  
Kun Zeng ◽  
Zhiwei Pan ◽  
Yibin Xu ◽  
Yingying Qu

Background Eligibility criteria are the main strategy for screening appropriate participants for clinical trials. Automatic analysis of clinical trial eligibility criteria by digital screening, leveraging natural language processing techniques, can improve recruitment efficiency and reduce the costs involved in promoting clinical research. Objective We aimed to create a natural language processing model to automatically classify clinical trial eligibility criteria. Methods We proposed a classifier for short text eligibility criteria based on ensemble learning, where a set of pretrained models was integrated. The pretrained models included state-of-the-art deep learning methods for training and classification, including Bidirectional Encoder Representations from Transformers (BERT), XLNet, and A Robustly Optimized BERT Pretraining Approach (RoBERTa). The classification results by the integrated models were combined as new features for training a Light Gradient Boosting Machine (LightGBM) model for eligibility criteria classification. Results Our proposed method obtained an accuracy of 0.846, a precision of 0.803, and a recall of 0.817 on a standard data set from a shared task of an international conference. The macro F1 value was 0.807, outperforming the state-of-the-art baseline methods on the shared task. Conclusions We designed a model for screening short text classification criteria for clinical trials based on multimodel ensemble learning. Through experiments, we concluded that performance was improved significantly with a model ensemble compared to a single model. The introduction of focal loss could reduce the impact of class imbalance to achieve better performance.


2020 ◽  
Author(s):  
Kun Zeng ◽  
Zhiwei Pan ◽  
Yibin Xu ◽  
Yingying Qu

BACKGROUND Eligibility criteria are the main strategy for screening appropriate participants for clinical trials. Automatic analysis of clinical trial eligibility criteria by digital screening, leveraging natural language processing techniques, can improve recruitment efficiency and reduce the costs involved in promoting clinical research. OBJECTIVE We aimed to create a natural language processing model to automatically classify clinical trial eligibility criteria. METHODS We proposed a classifier for short text eligibility criteria based on ensemble learning, where a set of pretrained models was integrated. The pretrained models included state-of-the-art deep learning methods for training and classification, including Bidirectional Encoder Representations from Transformers (BERT), XLNet, and A Robustly Optimized BERT Pretraining Approach (RoBERTa). The classification results by the integrated models were combined as new features for training a Light Gradient Boosting Machine (LightGBM) model for eligibility criteria classification. RESULTS Our proposed method obtained an accuracy of 0.846, a precision of 0.803, and a recall of 0.817 on a standard data set from a shared task of an international conference. The macro F1 value was 0.807, outperforming the state-of-the-art baseline methods on the shared task. CONCLUSIONS We designed a model for screening short text classification criteria for clinical trials based on multimodel ensemble learning. Through experiments, we concluded that performance was improved significantly with a model ensemble compared to a single model. The introduction of focal loss could reduce the impact of class imbalance to achieve better performance.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


Author(s):  
Jacqueline Peng ◽  
Mengge Zhao ◽  
James Havrilla ◽  
Cong Liu ◽  
Chunhua Weng ◽  
...  

Abstract Background Natural language processing (NLP) tools can facilitate the extraction of biomedical concepts from unstructured free texts, such as research articles or clinical notes. The NLP software tools CLAMP, cTAKES, and MetaMap are among the most widely used tools to extract biomedical concept entities. However, their performance in extracting disease-specific terminology from literature has not been compared extensively, especially for complex neuropsychiatric disorders with a diverse set of phenotypic and clinical manifestations. Methods We comparatively evaluated these NLP tools using autism spectrum disorder (ASD) as a case study. We collected 827 ASD-related terms based on previous literature as the benchmark list for performance evaluation. Then, we applied CLAMP, cTAKES, and MetaMap on 544 full-text articles and 20,408 abstracts from PubMed to extract ASD-related terms. We evaluated the predictive performance using precision, recall, and F1 score. Results We found that CLAMP has the best performance in terms of F1 score followed by cTAKES and then MetaMap. Our results show that CLAMP has much higher precision than cTAKES and MetaMap, while cTAKES and MetaMap have higher recall than CLAMP. Conclusion The analysis protocols used in this study can be applied to other neuropsychiatric or neurodevelopmental disorders that lack well-defined terminology sets to describe their phenotypic presentations.


Traditional encryption systems and techniques have always been vulnerable to brute force cyber-attacks. This is due to bytes encoding of characters utf8 also known as ASCII characters. Therefore, an opponent who intercepts a cipher text and attempts to decrypt the signal by applying brute force with a faulty pass key can detect some of the decrypted signals by employing a mixture of symbols that are not uniformly dispersed and contain no meaningful significance. Honey encoding technique is suggested to curb this classical authentication weakness by developing cipher-texts that provide correct and evenly dispersed but untrue plaintexts after decryption with a false key. This technique is only suitable for passkeys and PINs. Its adjustment in order to promote the encoding of the texts of natural languages such as electronic mails, records generated by man, still remained an open-end drawback. Prevailing proposed schemes to expand the encryption of natural language messages schedule exposes fragments of the plaintext embedded with coded data, thus they are more prone to cipher text attacks. In this paper, amending honey encoded system is proposed to promote natural language message encryption. The main aim was to create a framework that would encrypt a signal fully in binary form. As an end result, most binary strings semantically generate the right texts to trick an opponent who tries to decipher an error key in the cipher text. The security of the suggested system is assessed..


Author(s):  
Sourajit Roy ◽  
Pankaj Pathak ◽  
S. Nithya

During the advent of the 21st century, technical breakthroughs and developments took place. Natural Language Processing or NLP is one of their promising disciplines that has been increasingly dynamic via groundbreaking findings on most computer networks. Because of the digital revolution the amounts of data generated by M2M communication across devices and platforms such as Amazon Alexa, Apple Siri, Microsoft Cortana, etc. were significantly increased. This causes a great deal of unstructured data to be processed that does not fit in with standard computational models. In addition, the increasing problems of language complexity, data variability and voice ambiguity make implementing models increasingly harder. The current study provides an overview of the potential and breadth of the NLP market and its acceptance in industry-wide, in particular after Covid-19. It also gives a macroscopic picture of progress in natural language processing research, development and implementation.


Sign in / Sign up

Export Citation Format

Share Document