Experimental studies on few-view reconstruction for high-resolution micro-CT

2013 ◽  
Vol 21 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Kriti Sen Sharma ◽  
Xin Jin ◽  
Christian Holzner ◽  
Shree Narayanan ◽  
Baodong Liu ◽  
...  
2002 ◽  
Vol 47 (16) ◽  
pp. 2987-2999 ◽  
Author(s):  
Ahmed M Minhaj ◽  
Fabrice Manns ◽  
Peter J Milne ◽  
David B Denham ◽  
Nelson Salas Jr ◽  
...  

Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 27
Author(s):  
Jean-Paul Mosnier ◽  
Eugene T. Kennedy ◽  
Jean-Marc Bizau ◽  
Denis Cubaynes ◽  
Ségolène Guilbaud ◽  
...  

High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398–403 eV, 1s⟶2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415–440 eV photon region 1s⟶(1s2s22p2 4P)np and 1s⟶(1s2s22p2 2P)np resonances forming well-developed Rydberg series up n=7 and n=8 , respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout.


Author(s):  
Stéphanie Quadros Tonelli ◽  
Marcelo Avelar Antunes ◽  
Kênia Maria Soares de Toubes ◽  
Antônio Carlos de Oliveira Miranda ◽  
André Maués Brabo Pereira ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


2004 ◽  
Vol 12 (8) ◽  
pp. 614-626 ◽  
Author(s):  
Danika L. Batiste ◽  
Alexandra Kirkley ◽  
Sheila Laverty ◽  
Lisa M.F. Thain ◽  
Alison R. Spouge ◽  
...  

2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


2016 ◽  
Vol 24 ◽  
pp. S277-S278
Author(s):  
H. Gahunia ◽  
S. Karhula ◽  
T. Ylitalo ◽  
E. Hæggström ◽  
K.P. Pritzker ◽  
...  

Author(s):  
Bankim Mahanta ◽  
P.G. Ranjith ◽  
T.N. Singh ◽  
Vikram Vishal ◽  
WenHui Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document