scholarly journals Structure and Properties of Coatings Made with Self Shielded Cored Wire

2016 ◽  
Vol 16 (3) ◽  
pp. 39-42 ◽  
Author(s):  
M. Gucwa ◽  
J. Winczek ◽  
R. Bęczkowski ◽  
M. Dośpiał

Abstract The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical microscopy and X-ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of investigated coatings.

2016 ◽  
Vol 16 (4) ◽  
pp. 23-28 ◽  
Author(s):  
R. Bęczkowski ◽  
M. Gucwa

Abstract The surfacing technologies are used for constitution of protection layer against wear and is destined for obtaining coating with high hardness. Among many weldings methods currently used to obtain the hard surface layer one of the most effective way of hardfacing is using flux cored arc welding. This additional material gives more possibilities to make expected hard surface layer. Chemical composition, property and economic factors obtained in flux cored wire are much richer in comparison to these obtained with other additional materials. This is the reason why flux cored wires give possibilities of application this kind of material for improving surface in different sectors of industry. In the present paper the imperfection in the layers was used for hardfacing process in different situations to show the possible application in the surface layer. The work presents studies of imperfection of the welds, contains the picture of microstructures, macrostructures and shows the results of checking by visual and penetrant testing methods.


2019 ◽  
Vol 945 ◽  
pp. 706-711
Author(s):  
A.K. Kychkin ◽  
G.G. Vinokurov ◽  
N.F. Struchkov

Multiple use of pan concentrate from placer deposits directly in technical process without prealltoment of pure components could become one of promising directions in the field of receiving wide range of multicomponent metal and ceramic powdered materials. In this paper as the object of comparative examination, we present the hemimethylated plating made of exploited experimentative flux cored wires based on industrial Ni-Cr-B-Si system powder modified with rare-earth elements of concentrated complex from Tomtor mineral assets Republic of Sakha (Yakutia). The structure of received plating is heterogeneous and has oxidation coating as boundaries. According to the data of the phase shift analysis plating predominantly consist of Fe-Ni austenitic alloy phases with the Cr, Si carbide and Cr boride precipitation strengthening, plating generally consist of Al2O3, Cr2O3 и Fe2O3 oxide. The research of the plating ultimate composition testifies the equable allocation of main and alloying elements, local location of some elements in the structure of the plating. Microhardness of flux cored wire plating substantially depends on composition and fabricated structure. It has been established that the introduction of rare earth elements provided the formation of strengthening phase with the high hardness of plating resulting in wear resistance increase.


Author(s):  
A.L. Borisova ◽  
I.V. Mitz ◽  
A. Kleyman

Abstract This paper presents the results an experimental study on ferroalloy-base flux-cored wire coatings. The work conducted shows that it is possible to improve the structure and properties of coatings by adding aluminum to the ferrochromium powder charge and rare-earth elements and calcium to ferroboron. This reduces the oxygen content and porosity of coatings by a factor of 1.5-2. It also reduces residual tensile stresses in outer coating layers and improves coating-substrate adhesion strength as well as abrasive wear resistance.


2018 ◽  
Vol 43 (2) ◽  
pp. 21-25 ◽  
Author(s):  
Frank Schreiber ◽  
Benedikt Allebrodt ◽  
Tim Erpel

The protection of machinery and structural components by thermal coatings is of huge economic importance. Each hour of downtime, caused by deficient coatings as a result of wear and corrosion, costs a fortune. Savings by reducing these downtime hours can be achieved by applying optimized functional coatings which show enhanced properties. The main welding processes for applying coatings are GMAW or OA, PTA or Laser, each with their pros and cons. The PTA process can be seen as the intermediate process bridging the low cost, high deposition rate and the expensive but high end Laser. Recently, the PTA and especially the laser process are gaining more attention and market shares. Nowadays the flux-cored wires can be upgraded more and more with for instance complex carbides and achieve coatings similar to the high performance coatings obtained by PTA and Laser welding but at much lower costs. The common problems accompanying the GMAW process: a large heat affected zone and dilution, can be circumvented by using the cold metal transfer (CMT), the AC-GMAW- and the GMAW hot wire process, allowing the flux-cored wires to fully deploy their large potential and compete with the welding techniques. The current paper will describe the modern GMAW hot wire process and then deal with innovative materials and process concepts for the high performance flux-cored wire to give a competitive alternative for the PTA process and expensive laser.


2020 ◽  
Vol 991 ◽  
pp. 3-9
Author(s):  
Herry Oktadinata ◽  
Winarto Winarto ◽  
Eddy S. Siradj

This work investigated microstructure and impact toughness of multi-pass flux-cored arc welded SM570-TMC steel. A comparison was made between weldments fabricated with average heat input of 0.9 kJ/mm and 1.4 kJ/mm, respectively. SM570 steel plate with 16 mm nominal thickness and 1.2 mm diameter of E81-Ni1 flux-cored wire were selected in this experiment. Multi-pass flux-cored arc welding (FCAW) was performed using carbon dioxide shielding gas. Then the weldments were observed using optical microscopy, scanning electron microscope (SEM) and electron probe micro analyzer (EPMA). The steel joint strength was measured via tensile test, and Charpy impact test was performed at three different test temperatures. The microstructure observation exhibited the base metal mainly consist of ferrite and pearlite features, while the weld metal contained the acicular ferrites, polygonal ferrites and M-A constituent at both different heat inputs. The impact toughness of base metal is superior than weld metals. The weld metals fabricated at average heat input of 0.9 kJ/mm have a higher low temperature impact toughness than using heat input of 1.4 kJ/mm. The acicular ferrites amount that significant reduced at the higher heat input may degrade the toughness at low temperature.


2014 ◽  
Vol 216 ◽  
pp. 151-156 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Vodǎ ◽  
Gheorghe Drăgănescu

The aim of this work was to determine by vibration tests the longitudinal elastic modulus and shear modulus of welded joints by flux cored arc welding. These two material properties are characteristic elastic constants of tensile stress respectively torsion stress and can be determined by several non-destructive methods. One of the latest non-destructive experimental techniques in this field is based on the analysis of the vibratory signal response from the welded sample. An algorithm based on Pronys series method is used for processing the acquired signal due to sample response of free vibrations. By the means of Finite Element Method (FEM), the natural frequencies and modes shapes of the same specimen of carbon steel were determined. These results help to interpret experimental measurements and the vibration modes identification, and Youngs modulus and shear modulus determination.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


2018 ◽  
Vol 115 (4) ◽  
pp. 410
Author(s):  
Fengyu Song ◽  
Yanmei Li ◽  
Ping Wang ◽  
Fuxian Zhu

Three weld metals with different oxygen contents were developed. The influence of oxygen contents on the microstructure and impact toughness of weld metal was investigated through high heat input welding tests. The results showed that a large number of fine inclusions were formed and distributed randomly in the weld metal with oxygen content of 500 ppm under the heat input condition of 341 kJ/cm. Substantial cross interlocked acicular ferritic grains were induced to generate in the vicinity of the inclusions, primarily leading to the high impact toughness at low temperature for the weld metal. With the increase of oxygen content, the number of fine inclusions distributed in the weld metal increased and the grain size of intragranular acicular ferrites decreased, which enhanced the impact toughness of the weld metal. Nevertheless, a further increase of oxygen content would contribute to a great diminution of the austenitic grain size. Following that the fraction of grain boundary and the start temperature of transformation increased, which facilitated the abundant formation of pro-eutectoid ferrites and resulted in a deteriorative impact toughness of the weld metal.


1993 ◽  
Vol 115 (1) ◽  
pp. 76-82 ◽  
Author(s):  
S. R. Bala ◽  
L. Malik ◽  
J. E. M. Braid

A primary consideration in the welding of structures for service in Canadian offshore and arctic regions is the toughness of weld metals required at very low ambient temperatures (−30°C to −60°C). To assess the suitability of cored wires for applications in these environments, some currently available commercial consumables for the flux-cored arc welding (FCAW) process were evaluated. Cored wires belonging to four different categories: basic, rutile, metal-cored and innershield, were used to prepare welds with similar welding procedures. Weld metal Charpy V-notch (CVN) and crack tip opening displacement (CTOD) tests were carried out and the effect of weld metal composition, microstructure and inclusion content in the weld metal toughness was examined. The Charpy transition temperatures and the CTOD toughness results indicated that, of the 16 wires tested, there were only seven that would be suitable for critical applications.


2016 ◽  
Vol 23 (04) ◽  
pp. 1630002 ◽  
Author(s):  
NAIMING LIN ◽  
RUIZHEN XIE ◽  
PENG ZHOU ◽  
JIAOJUAN ZOU ◽  
YONG MA ◽  
...  

Plasma electrolytic saturation (PES) technique which holds the advantages of short treating time and limited heating influence and immediate quenching effect is conducted under high voltage power supply in some electrolyte has been extensively applied to enhance the surface performance of metallic materials. Steel is widely used in various fields thanks to its promising merits of easy workability, plasticity, toughness and weldability. It accounts for a large proportion in the application scope of the metal materials. Steel surfaces with good corrosion resistance, promising wear resistance and high hardness would be obtained by PES. Meanwhile, uniformed coatings can be formed without special requirements for substrate geometries using the PES. This paper first presents a brief introduction of the technological principle of PES. The status on studies and applications of PES for improving surface performance of steels has been reviewed.


Sign in / Sign up

Export Citation Format

Share Document