scholarly journals Development of thermoplastic composite materials based on modified polypropylene

Author(s):  
D.O. Chervakov ◽  
◽  
O.S. Sverdlikovska ◽  
O.V. Chervakov ◽  
◽  
...  

To improve the physical-mechanical and thermophysical properties of polypropylene-based thermoplastic composite materials, we performed modification of a polymer matrix by reactive extrusion of polypropylene in the presence of benzoyl peroxide and polysiloxane polyols. Modified polypropylene was compounded with basalt, carbon, and para-aramide reinforcing fillers in a screw-disc extruder. It was established that the reinforcement of modified polypropylene by basalt fibers ensured a 110% increase in tensile strength. The reinforcement of modified polypropylene by carbon fibers allowed fabricating thermoplastic composite materials with tensile strength increased by 14%. The maximum reinforcing effect was observed by using para-aramide fibers as reinforcing fibers for modified polypropylene with tensile strength increased by 30% as compared with initial polypropylene. It was determined that the obtained thermoplastic composite materials based on modified polypropylene can be processed into products by the most productive methods (extrusion and injection molding). The developed materials exhibited improved thermal stability. The proposed ways of modification methods provide substantial improvement in physical-mechanical and thermophysical properties of modified polypropylene-based thermoplastic composite materials as compared with initial polypropylene. In addition, they ensure a significant increase in service properties of the products prepared from thermoplastic composite materials based on modified polypropylene.

Author(s):  
Vladyslav Solovei ◽  
Vitalii Oleksyshen V.

The prevalence of polymers in all spheres of human life necessitates the creation of new more effective composite materials based on polymer matrices and reinforcing fillers, which by their characteristics meet the growing needs of society. In modern industry, production speeds are constantly increasing, so additive technologies are becoming a powerful alternative to traditional single and small-scale production. Among the existing types of additive technologies, the method of fused deposition modeling (FDM) deserves special attention, which provides an opportunity to organize production in conditions of limited material, time and human resources. As opposite to traditional production technologies, such as injection molding, FDM allows you to create products of more complex geometric shapes, using different combinations of polymer matrices and reinforcing fillers and thus create composite materials with the required physico-mechanical, rheological and other properties. At the same time, the main advantages of FDM also cause a number of serious disadvantages, such as anisotropy of the properties of finished products, printing defects that lead to increased yields of defective products, uneven physical and mechanical properties etc. In particular, the anisotropy of the properties of FDM-printed products results in significantly lower strength of the parts in the transverse direction to the 3D printing direction (strand overlay direction) compared to the longitudinal one, and the discontinuity of the reinforcing fibers in the strands of polymeric material leads to reduced strength. The main areas of research to modernize the process of manufacturing products on a 3D printer using the FDM method are: modernization of components and structures of 3D printers to improve the melting process and layering of materials, aimed at improving print quality and speed, as well as reducing defective yield products; improving the properties of raw materials and creating composite materials to improve the quality of finished products and their characteristics, such as electrical, chemical, mechanical, thermal, environmental, etc .; development of new biopolymers, technologies of their production and use for 3D-printing, which in the future are planned to be used in the creation of bionic parts of human bodies, etc. To overcome the main shortcomings of FDM technology, it is proposed to modernize the method of 3D printing and the extruder unit of the 3D printer, which allows to create composite materials directly (directly in the extruder), using different combinations of polymer matrices and solid reinforcing fibers.


In the article the polymeric materials based on epoxy-polyester binder with addition of dispersed fibers were developed. The mechanical and thermophysical methods were used. The influence of carbon fibers (0.01–0.30 pts.wt.) and cotton (0.01–0.30 pts.wt.) on the physical and mechanical, thermophysical properties of epoxy-polyester composites was investigated. The results of the experiment showed that the introduction of carbon fibers leads to an increase in the fracture stresses, the flexural modulus; the maximum increase was observed for the carbon fiber content q = 0.01 pts.wt. (fl = 71.0 MPa, E = 3.8 GPa, W = 7.8 kJ/m2 ). The heat resistance of composite materials at this content of carbon fibers is maximal (T = 337 K), and the coefficient of linear thermal expansion (CLTE) is minimal and decreases in all temperature ranges (compared to the matrix). It was found, that the introduction of cotton fibers at a content q = 0.02 pts.wt. into the composition leads to an increase of the flexural modulus from E = 3.6 GPa (matrix) to E = 3.8 GPa and flexural stresses from fl = 50.4 MPa to fl = 55.2 MPa. The impact strength of such materials decreases from W = 8.3 kJ/m2 to W = 4.9 kJ/m2 . The results of the study of physical and mechanical properties of composite materials with the addition of cotton fibers were confirmed by thermophysical properties. It was found, that the heat resistance of materials increases from T = 335 K to T = 338 K at this content. The developed composite materials filled can be used to protect equipment, which are exposed to high temperatures or dynamic loads at moderate temperatures.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2960 ◽  
Author(s):  
Danilo Marini ◽  
Marco Valente

Magnesium is one of the lightest structural metals used in different industrial sectors and many works in the literature have studied its reinforcement by filler addition. Basalt fibers are natural fillers that have good mechanical properties, excellent resistance to high temperatures, and lower cost than carbon fibers. Considering this, in recent years, they have been increasingly used in the production of composite materials with polymeric matrices. However, very little information is available in the literature about the use of basalt fibers as reinforcement in metal matrix composite materials. It is well known that the impregnation of fiber reinforcement affects the mechanical behavior of the composite materials. The aim of this study was to investigate the impregnation and the behavior of basalt fibers in a magnesium alloy composite material manufactured by a centrifugal casting technique.


2021 ◽  
Vol 13 (3) ◽  
pp. 1364
Author(s):  
Michele La Noce ◽  
Alessandro Lo Faro ◽  
Gaetano Sciuto

Clay has a low environmental impact and can develop into many different products. The research presents two different case studies. In the first, the clay is the binder of raw earth doughs in order to produce clay-bricks. We investigate the effects of natural fibrous reinforcements (rice straws and basalt fibers) in four different mixtures. From the comparison with a mix without reinforcements, it is possible to affirm that the 0.40% of basalt fibers reduce the shrinkage by about 25% and increase the compressive strength by about 30%. Future studies will focus on identifying the fibrous effects on tensile strength and elastic modulus, as well as the optimal percentage of fibers. In the second study, the clay, in form of brick powder (“cocciopesto”), gives high alkaline resistance and breathability performance, as well as rendering and color to the plaster. The latter does not have artificial additives. The plaster respects the cultural instance of the original building. The research underlines how the use of a local (and traditional) material such as clay can be a promoter of sustainability in the contemporary building sector. Future studies must investigate further possible uses of clay as well as a proper regulatory framework.


2019 ◽  
Vol 254 ◽  
pp. 01018
Author(s):  
František Bárnik ◽  
Milan Vaško ◽  
Milan Sága ◽  
Marián Handrik ◽  
Alžbeta Sapietová

By 3D printing it is possible to create different structures with different fiber-laying directions. These structures can be created depending on the type of 3D printer and its software. The Mark Two printer allows printing Onyx, a material based on nylon in combination with microcarbon fibers. Onyx can be used alone or reinforced with kevlar, glass or carbon fibers. This article deals with 3D printing and evaluation of mechanical properties of printed samples.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2019 ◽  
Vol 3 (2) ◽  
pp. 35 ◽  
Author(s):  
Miguel Reis Silva ◽  
António M. Pereira ◽  
Nuno Alves ◽  
Gonçalo Mateus ◽  
Artur Mateus ◽  
...  

This work presents an innovative system that allows the oriented deposition of continuous fibers or long fibers, pre-impregnated or not, in a thermoplastic matrix. This system is used in an integrated way with the filamentary fusion additive manufacturing technology and allows a localized and oriented reinforcement of polymer components for advanced engineering applications at a low cost. To demonstrate the capabilities of the developed system, composite components of thermoplastic matrix (polyamide) reinforced with pre-impregnated long carbon fiber (carbon + polyamide), 1 K and 3 K, were processed and their tensile and flexural strength evaluated. It was demonstrated that the tensile strength value depends on the density of carbon fibers present in the composite, and that with the passage of 2 to 4 layers of fibers, an increase in breaking strength was obtained of about 366% and 325% for the 3 K and 1 K yarns, respectively. The increase of the fiber yarn diameter leads to higher values of tensile strength of the composite. The obtained standard deviation reveals that the deposition process gives rise to components with anisotropic mechanical properties and the need to optimize the processing parameters, especially those that lead to an increase in adhesion between deposited layers.


Sign in / Sign up

Export Citation Format

Share Document