Parametric and nonparametric identification of the distribution law by interval data

Metrologiya ◽  
2018 ◽  
pp. 3-16
Author(s):  
S. S. Vozhov ◽  
E. V. Chimitova
2012 ◽  
Vol 38 (7) ◽  
pp. 1190 ◽  
Author(s):  
Yu PENG ◽  
Qing-Hua LUO ◽  
Dan WANG ◽  
Xi-Yuan PENG

Author(s):  
D. N. Kalacheva

Herein, the main features and rules of using guaranteed values when analyzing the quality of rocket - space equipment products are considered. The definition of the guaranteed value and the form of its presentation is given. It is indicated that guaranteed value is distributed and is characterized by the frequency distribution law. The main methods of representation and conversion of guaranteed values are statistical. Examples of determining the basic characteristics of guaranteed values are given.


2018 ◽  
pp. 57-62
Author(s):  
E. I. Gundrova ◽  
A. P. Lukyanov ◽  
A. V. Pruglo ◽  
S. S. Ravdin

Previously, the authors have proposed a generalized model for estimating the distribution law parameters of luminosity of space objects, assuming that not only successful but also unsuccessful measurement results are taken into account. Estimation was done on the data of observations under similar conditions: phase angle, range, sensibility of the telescope. The algorithm under such limitations was tested on model data and real measurements. Therefore, obtained results showed that algorithm did not fit for cases of changing range of space objects. In this work, the new algorithm, that allows to merge information from different ranges to the observed space object, is proposed. In this case, luminosity values are reduced to the ones at a reference distance of 1000 km considering sensibility of the telescope. To obtain estimates of the parameters the Cramer-Mises-Smirnov criterion is used. This algorithm was tested on model data and results of its work on real data were obtained. The data showed correct work of the algorithm and also confirmed the practicability of organization the registration of unsuccessful measurements.


2020 ◽  
Vol 165 ◽  
pp. 04014
Author(s):  
Liu Tao ◽  
Li Jia ◽  
Zheng Zhi-gang ◽  
Huang Zhi ◽  
Jiang Jian ◽  
...  

GPR is an effective non-destructive testing technology. This paper introduces its composition principle and operation method, explains the process of parameter setting and image optimization, obtains the dielectric constant of 10000 points, compares it with the density, and then obtains the uniformity distribution law of construction quality based on image. By calibrating the thickness of the road surface, the effective detection of road diseases can be realized, and the theoretical basis and practical application conditions of GPR technology can be clarified.


2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 154
Author(s):  
Anderson Fonseca ◽  
Paulo Henrique Ferreira ◽  
Diego Carvalho do Nascimento ◽  
Rosemeire Fiaccone ◽  
Christopher Ulloa-Correa ◽  
...  

Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards truncated processes as open questions in this field. This work was motivated by the register of elements related to the water particles monitoring (relative humidity), an important source of moisture for the Copiapó watershed, and the Atacama region of Chile (the Atacama Desert), and presenting high asymmetry for rates and proportions data. This paper proposes a new control chart for interval data about rates and proportions (symbolic interval data) when they are not results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such as having only one parameter, from which we develop the unit-Lindley chart for both classical and symbolic data. The performance of the proposed control chart is analyzed using the average run length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics calculated through an extensive Monte Carlo simulation study. Results from the real data applications reveal the tool’s potential to be adopted to estimate the control limits in a Statistical Process Control (SPC) framework.


Sign in / Sign up

Export Citation Format

Share Document