Micronutrients Considerations for Warm-Season Grass Systems in Florida

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Jane C. Griffin ◽  
Joao Mauricio Buen Vendramini ◽  
Diane L. Rowland ◽  
Maria Lucia Silveira

Warm-season grasses are vital to livestock production systems and dominate ground cover in tropical and subtropical areas. Many popular warm-season grasses, such as bahiagrass and bermudagrass, have roots that penetrate deeper into the soil profile, which aids in both drought tolerance, nutrient uptake, and the minimization of soil erosion. In Florida, spodosols are the predominant soil order used for forage production and have limited fertility. Micronutrients are essential elements that are required in smaller quantities than macronutrients but are equally as important for proper plant growth and performance. An element can be considered essential for plant growth if a plant fails to complete its life cycle in the absence of the element, the elements action is specific and cannot be completely replaced by another element, it has a direct effect on the organism, or it is a constituent of a molecule that is known to be essential. The objective of this publication is to describe the role of micronutrients in warm-season grass production.

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 26-27
Author(s):  
Caroline Chappell ◽  
Landon Marks ◽  
Katie Mason ◽  
Mary K Mullenix ◽  
Sandra L Dillard ◽  
...  

Abstract A 2-yr study was conducted at Black Belt Research and Extension Center in Marion Junction, AL, to evaluate the effect of nitrogen (N) fertilizer application rate on forage production characteristics, nutritive value, and animal performance of beef heifers grazing a mixture of native warm-season grasses (NWSG) including big bluestem, little bluestem, and indiangrass. Six, two-hectare plots were randomly assigned to one of two treatments (0 or 67 kg N ha-1 applied in early April; n = 3 replications per treatment). Paddocks were continuously stocked with four weaned Angus × Simmental beef heifers (initial BW 288 ± 7 kg) from late May/early June through mid-to-late August during 2018 (73 grazing d) and 2019 (70 grazing d), respectively. Put-and-take cattle were used to manage forage to a target of 38 cm. Forage mass and canopy heights were collected every two weeks during the trial. Visual ground cover ratings, canopy light interception, and botanical composition were measured at the beginning and end of the trial in each year. Hand-plucked samples were collected every two weeks during the grazing trial to determine forage nutritional value. Data were analyzed using the PROC MIXED procedure in SAS 9.4, and differences were declared significant when P ≤ 0.05. Nitrogen fertilized NWSG had greater crude protein (P < 0.0001), sward heights (P = 0.0003), and canopy light interception at the beginning of the season (P = 0.0049) compared to non-fertilized paddocks. However, there were no differences (P ≥ 0.05) among N-fertility treatments for mean forage mass, heifer ADG, or BCS across the 2-yr study. Botanical composition data indicated that indiangrass decreased from 64% to 61% (P = 0.0022) and weed pressure increased from 11% to 15% (P = 0.0064) across the summer grazing season. Canopy light interception decreased by 51% from early June to August in fertilized NWSG and 26% in unfertilized paddocks, respectively. These data illustrate that NWSG systems may provide a viable grazing system in the summer months under reduced N inputs.


Crop Science ◽  
2014 ◽  
Vol 54 (6) ◽  
pp. 2815-2826 ◽  
Author(s):  
Marco Schiavon ◽  
Bernd Leinauer ◽  
Matteo Serena ◽  
Bernd Maier ◽  
Rossana Sallenave

2016 ◽  
Vol 233 ◽  
pp. 85-93 ◽  
Author(s):  
Adrian P. Monroe ◽  
Richard B. Chandler ◽  
L. Wes Burger ◽  
James A. Martin

2016 ◽  
Vol 9 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Katie L. Wirt ◽  
Rodney G. Lym

When invasive weeds are removed with herbicides, revegetation of native species is often desirable. The extended soil activity of aminocyclopyrachlor is important for long-term weed control but could reduce recovery of native species as well. The effect of aminocyclopyrachlor applied alone or with chlorsulfuron on cool- and warm-season grass species commonly used for revegetation was evaluated. The cool-season grasses included green needlegrass, intermediate wheatgrass, and western wheatgrass, whereas the warm-season grasses were big bluestem, sideoats grama, and switchgrass. A separate experiment was conducted for each species. Aminocyclopyrachlor was applied at 91 to 329 g ha−1 alone or with chlorsulfuron from 42 to 133 g ha−1 approximately 30 d after emergence. Warm-season grasses generally were more tolerant of aminocyclopyrachlor than the cool-season grasses evaluated in this study. Switchgrass and big bluestem were the most tolerant of the warm-season species when aminocyclopyrachlor was applied at 168 g ha−1 and averaged 199 and 150% forage production, respectively, compared with the control. Green needlegrass was the most tolerant cool-season grass. Western wheatgrass was the least tolerant species evaluated because forage production only averaged 32% of the control the year after treatment and thus would not be suitable for seeding if aminocyclopyrachlor was applied. The effect of chlorsulfuron applied with aminocyclopyrachlor varied by grass species. For example, green needlegrass injury 8 wk after treatment (WAT) averaged 30 and 48% when aminocylopyrachlor was applied alone, respectively, but injury was reduced to less than 16% when aminocyclopyrachlor was applied with chlorsulfuron. However, injury on the less-tolerant intermediate wheatgrass ranged from 48 to 92% by 4 WAT when aminocyclopyrachlor was applied alone and from 60 to 86% when chlorsulfuron was included in the treatment.


2010 ◽  
Vol 20 (1) ◽  
pp. 153-159 ◽  
Author(s):  
Aaron J. Patton ◽  
Jon M. Trappe ◽  
Michael D. Richardson

Covers, mulches, and erosion-control blankets are often used to establish turf. There are reports of various effects of seed cover technology on the germination and establishment of warm-season grasses. The objective of this study was to determine how diverse cover technologies influence the establishment of bermudagrass (Cynodon dactylon), buffalograss (Buchloe dactyloides), centipedegrass (Eremochloa ophiuroides), seashore paspalum (Paspalum vaginatum), and zoysiagrass (Zoysia japonica) from seed. Plots were seeded in June 2007 or July 2008 with the various turfgrass species and covered with cover technologies, including Curlex, Deluxe, and Futerra products, jute, Poly Jute, polypropylene, straw, straw blanket, Thermal blanket, and the control. Establishment was reduced in straw- and polyethylene-covered plots due to decreased photosythentically active radiation penetration or excessive temperature build-up, respectively. Overall, Deluxe and Futerra products, jute, and Poly Jute allowed for the highest establishment of these seeded warm-season grasses.


2019 ◽  
Vol 52 (1) ◽  
pp. 16-29
Author(s):  
Christopher N. Boyer ◽  
Dayton M. Lambert ◽  
Andrew P. Griffith ◽  
Christopher D. Clark ◽  
Burton English

AbstractWe determined how pasture and grazing management practices affected the number of days hay was fed to cattle by season. Data were collected from a survey of Tennessee cattle producers. Days of cattle on hay varied across seasons because of variations in forage production and weather. The number of days hay was fed to cattle varied with pasture-animal management practices such as rotating pastures, forage mixtures, and weed management strategies. Having mixtures of cool- and warm-season grasses reduced the number of days on hay in the winter, spring, and summer months indicating benefits from diversified forages.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1085 ◽  
Author(s):  
Shawna Marie Hubert ◽  
Morouj Al-Ajeeli ◽  
Christopher A. Bailey ◽  
Giridhar Athrey

The gut microbiota of chicken has received much attention due to its importance for bird health, food safety, and performance. In the United States, the impending transition to cage-free housing environments has raised many questions about its consequences for poultry health, productivity, and welfare. Therefore, we investigated how housing environments and feed composition affect the poultry gut microbiome. Such data is necessary to inform the design of production systems that promote health and food safety. In this study, we investigated the cecal microbiome of both caged and cage-free laying hens that were fed either an industry-standard soy-based versus a soy-free diet. Caged hens were housed in standard industry-style layer cages with one bird per cage, and cage-free hens were housed in a poultry barn with an outdoor enclosed yard with multiple hens per pen. Our study showed significant differences in the gut microbiota between cage-free and caged environments. Cage free housing generated higher diversity compared to caged housing. Furthermore, we observed a synergistic interaction of soy-based feed in cage-free housing, as the cage-free soy group showed the highest alpha diversity, whereas the caged-soy group showed the lowest diversity overall.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 67-67
Author(s):  
Gabe J Pent

Abstract Winter feeds costs for small ruminants exceeds 50% of the total cost of most small ruminant production systems in the Southeastern U.S. Keeping these feed costs low is one of the most effective and time-tested ways to improve farm profitability. While maintaining an appropriate stocking rate will be critical for sustaining long-term farm productivity, a suite of other management practices is available to assist in this objective. Installing appropriate fence and watering system infrastructure for managing grazing will be critical for improving harvest efficiency and stockpiling forages for utilization when forage growth is limited. Filling gaps in forage production may also be achieved through the strategic use of a number of forage species, including warm-season or cool-season forages and annual or perennial forages. Managing stored forages appropriately during storing and feeding will help minimize feed losses, while producing quality hay will reduce the need for supplementary feeds. With the adoption of these proven practices, sheep and goat production may be optimized by allowing them to harvest their own feed almost year-round in the Southeastern U.S.


Sign in / Sign up

Export Citation Format

Share Document