scholarly journals 2006 Florida Plant Disease Management Guide: Sweet Basil

EDIS ◽  
2009 ◽  
Vol 2009 (2) ◽  
Author(s):  
Shouan Zhang ◽  
Pamela D. Roberts

Revised! PP-113, a 2-page fact sheet by Shoan Zhang and Pamela D. Roberts, describes the symptoms and cultural controls for four plant diseases common to Sweet Basil in Florida — downy mildew, leaf spot, bacterial leaf spot, and fusarium wilt. Published by the UF Department of Plant Pathology, March 2009. PP-113/PP113: Florida Plant Disease Management Guide: Sweet Basil (ufl.edu)

EDIS ◽  
1969 ◽  
Vol 2003 (3) ◽  
Author(s):  
Pam Roberts

This document is PP113, one of a series of the Department of Plant Pathology, 2003 Florida Plant Disease Management Guide, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Date revised January 2003. PP-113/PP113: 2009 Florida Plant Disease Management Guide: Sweet Basil (ufl.edu)


EDIS ◽  
2006 ◽  
Vol 2006 (13) ◽  
Author(s):  
Michael Merida ◽  
Aaron J. Palmateer

PP-232, a 9-page fact sheet by Michael Merida and Aaron J. Palmateer, describes several diseases of guava caused by fungi and stramenopile, describing the symptoms, causal organism, disease cycle and epidemiology, and management for each. Includes references. Published by the UF Plant Pathology Department as part of the Plant Disease Management Guide, June 2006.


EDIS ◽  
2009 ◽  
Vol 2009 (2) ◽  
Author(s):  
Ken Pernezny ◽  
Amanda Gevens ◽  
Tim Momol ◽  
Aaron Palmateer ◽  
Natalia Peres ◽  
...  

Revised! PPP-6, a 108-page publication by Ken Pernezny, Amanda Gevens, Tim Momol, Aaron Palmateer, Natalia Peres, Richard Raid, Pam Roberts, Gary Vallad, and Shousan Zhang, is a guide to lawful use of sprayable chemicals intended for control of plant diseases affecting vegetables grown in Florida. Published by the UF Department of Plant Pathology, September 2008.


Author(s):  
Rutuja Rajendra Patil ◽  
Sumit Kumar

To understand the influence of agro-meteorological parameters to take decisions related to various factors in an integrated plant disease management, it becomes vital to carry out scientific studies on the factors affecting it. The different agro-meteorological parameters namely temperature, humidity, moisture, rain, phenological week, cropping season, soil type, location, precipitation, heat index, and cloud coverage have been considered for this study. Each parameter has been allocated the ranking by using a technique called analytical hierarchical process (AHP). The parameter priorities are determined by calculating the Eigenvalues. This helps to make decisions related to integrated plant disease management where the prediction of plant disease occurrence, yield prediction, irrigation requirements, and fertilization recommendations can be taken. To take these decisions which parameters are good indicators can be identified using this method. The parameters majorly contribute to plant diseases and pest management decision making while delivers minor contribution in irrigation and fertilizer management related decision making. The manual results are compared with software generated results which indicates that both the results correlate with each other. Therefore, AHP technique can be successfully implemented for prioritizing agro-meteorological parameters for integrated plant diseases management as the results for both levels are consistent (consistency ratio < 0.1).


2001 ◽  
Vol 2 (1) ◽  
pp. 14 ◽  
Author(s):  
Patricia S. McManus ◽  
Virginia O. Stockwell

Streptomycin and oxytetracycline have been used on crop plants for 45 years and 25 years, respectively, without reports of adverse effects on humans. Their efficacy for control of plant diseases has been diminished in some regions due to the emergence of resistant pathogens. However, until effective and economic alternatives become available, antibiotics will remain important in the management of devastating plant diseases. Accepted for publication 19 March 2001. Published 27 March 2001.


EDIS ◽  
2007 ◽  
Vol 2007 (20) ◽  
Author(s):  
Timur Momol ◽  
Laura Ritchie ◽  
Hank Dankers

PP 240, a 13-page illustrated fact sheets, describes diseases common to apples in Florida, their symptoms, causal organisms, disease cycles and epidemiology, and management. Includes references and a table of fungicides approved for disease management of apple in Florida. Published by the UF Department of Plant Pathology, October 2007.


2008 ◽  
Vol 65 (spe) ◽  
pp. 71-75 ◽  
Author(s):  
Terry James Gillespie ◽  
Paulo Cesar Sentelhas

Many plant disease outbreaks are triggered by suitably warm temperatures during periods of leaf wetness. Measurements or estimations of leaf wetness duration provided by Agrometeorologists have allowed Plant Pathologists to devise weather timed spray schemes which often reduce the number of sprays required to control plant diseases, thus lowering costs and benefitting the environment. In the near future, tools such as numerical weather models with small grid spacings, and improved weather radar, are expected to reduce the need for tight networks of surface observations. The weather models will also provide growers with forecast warnings of potential upcoming disease outbreaks, which will further enhance the contribution of agrometeorology to plant disease management.


2009 ◽  
Vol 45 (No. 4) ◽  
pp. 125-139 ◽  
Author(s):  
R.D. Martyn

Plant diseases can be traced back almost as far as recorded history. Numerous ancient writings describe plagues and blasts destroying crops and modern civilization still faces many plant disease challenges. Plant pathology has its roots in botany and notable scientists such as Tillet, Prevost, and deBary already had concluded microscopic organisms could cause plant diseases before Robert Koch established the rules of proof of pathogenicity with sheep anthrax. Plant pathologists can be credited with helping improve crop yields and food production throughout the world. However, at a time when there are increasing challenges to crop production, some that potentially may increase the severity or distribution of plant diseases, the training of future plant pathologists appears to be declining, at least in the United States. The ability of the U.S. Land Grant University (USLGU) system to attract and train future generations of plant pathologists may be at risk. Recent data from university plant pathology departments collected by The American Phytopathological Society (APS) documents a decline in the number of students completing advanced degrees in plant pathology, departments with fewer faculty with a diverse expertise in applied plant pathology, fewer stand-alone, single discipline departments of plant pathology, a reduced ability of many departments to offer specific curricular aspects of plant pathology, and a demographic profile that casts an ominous prediction for an unusually large number of faculty retirements over the next decade. The impact of these factors could be a shortage of highly skilled, applied plant pathologists in the U.S. in coming years. The affect also may be felt globally as fewer international students may receive pre-doctoral and post-doctoral training in plant pathology in the U.S. as faculty retire and are not replaced. On the other hand, this likely will create greater opportunities for universities around the world to take leadership in many aspects of plant pathology education. While a decline in students and young faculty trained in applied and field-level specialties of plant pathology (mycology, bacteriology, plant nematology, forest pathology, epidemiology, etc.) is occurring, those trained in the cellular and molecular host-pathogen interactions specialties appear to be increasing. Many plant pathology faculty hired at USLGUs in the last decade are trained in molecular biology and received their Ph.D. degree in a field other than plant pathology. They are now applying those skills to research numerous aspects of host-pathogen interactions of model pathosystems. A shift to a greater research emphasis on molecular host-pathogen interactions over the last decade is evidenced by the number of research articles published in the three APS journals; Plant Disease, Phytopathology and Molecular Plant-Microbe Interactions (MPMI). From 1985 to 2007, there has been a decline in the number of articles published in Plant Disease (–29%) and Phytopathology (–36%) and a steady increase in those published in MPMI since its inception in 1990 (+111%). With new research tools come new research questions. The tools of molecular biology have allowed us to look deeper into questions than ever before and provided us with a perspective not before seen. As we dissect and decode the genomes of the world’s most notorious plant pathogens we get closer and closer to alleviating the global losses and human suffering caused by plant diseases. New “designer crops” with engineered traits for drought and cold tolerance, pest resistance, increased levels of micronutrients, healthier oils such as omega fatty acids, and plant-derived pharmaceuticals are all on the horizon. Research in the future likely will focus on new problems, traditionally seen as outside the discipline of plant pathology. The impact of climate change on plant diseases will be significant. As many parts of the world become warmer and drier some plant diseases likely will increase in severity. Pathogens are likely to migrate and survive in more northern latitudes greatly expanding their range and diseases exacerbated by abiotic stresses such as drought and salinity will increase. Plant pathology will continue to evolve as a multidisciplinary science. These changes will open up many new research opportunities. Plant pathology will play a bigger role in global food security. Research into the molecular and cellular interactions of symbiotic and endophytic organisms will help provide answers to food-borne illnesses caused by E. coli and Salmonella and how these and other human pathogens become established in plants in the field. Plant pathologists will team up with biomedical and aeronautical engineers, nanotechnologists, and computer scientists to develop microsensory technology to detect the introduction and spread of pathogens for biosecurity, diagnostics and epidemiological modeling purposes. Traditional areas of plant disease management and the use of biologicals for disease control also will benefit from a better understanding of the molecular and cellular processes and the similarity of virulence mechanisms and pathogen effectors between plant, insect, and vertebrate pathogens likely will bring new insights into human diseases. And last, but not least, there likely will be a resurgence in plant disease management and epidemiological research as the world’s dependence on biofuels increases and results in new diseases on intensively cultivated plant species used for biomass production.


2007 ◽  
Vol 8 (1) ◽  
pp. 64
Author(s):  
Forrest W. Nutter

The Irving E. Melhus Graduate Student Symposium is a prestigious annual event that takes place as part of the American Phytopathology Society (APS) annual meeting and is co-sponsored by the APS Epidemiology Committee and the APS Foundation. The I.E. Melhus symposia feature graduate students competitively chosen to present their thesis research results. Criteria for selection include evaluation of the significance of the contribution towards improving our understanding of plant pathology, their communication skills, and letters of nomination. Accepted for publication 24 April 2007. Published 26 July 2007.


Author(s):  
Kasun M. Thambugala ◽  
Dinushani A. Daranagama ◽  
Alan J. L. Phillips ◽  
Sagarika D. Kannangara ◽  
Itthayakorn Promputtha

Plant pathogens cause severe losses or damage to crops worldwide and thereby significantly reduce the quality and quantity of agricultural commodities. World tendencies are shifting towards reducing the usage of chemically synthesized pesticides, while various biocontrol methods, strategies and approaches are being used in plant disease management. Fungal antagonists play a significant role in controlling plant pathogens and diseases and they are used as Biocontrol Agents (BCAs) throughout the world. This review provides a comprehensive list of fungal BCAs used against fungal plant pathogens according to modern taxonomic concepts, and clarifies their phylogenetic relationships because thewrong names are frequently used in the literature of biocontrol. Details of approximately 300 fungal antagonists belonging to 13 classes and 113 genera are listed together with the target pathogens and corresponding plant diseases. Trichoderma is identified as the genus with greatest potential comprising 25 biocontrol agents that have been used against a number of plant fungal diseases. In addition to Trichoderma, nine genera are recognized as significant comprising five or more known antagonistic species, namely, Alternaria, Aspergillus, Candida, Fusarium, Penicillium, Pichia, Pythium, Talaromyces, and Verticillium. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of fungal antagonists was performed to establish their phylogenetic relationships.


Sign in / Sign up

Export Citation Format

Share Document