scholarly journals Investigation of heave dynamics of an air cushion vehicle segment skirt

2017 ◽  
Vol 20 (K5) ◽  
pp. 23-29
Author(s):  
Duong Van Le ◽  
Dat Duy Nguyen ◽  
Toan Van Mai

Air Cushion Vehicle (ACV) is a moving vehicle on airbags, which can travel on land and on water to transport people, goods and equipment. An important requirement for ACVs is to: increase reliability and longevity, reduce operating costs, stability and mobility. In this paper, a model for the dynamic behavior of air cushion vehicles segment skirt is presented. In this model, the compressible Bernoulli's equation, Newton's second law of motion are used to predict the dynamic behavior of the air cushion vehicles. Based on the developed model, the heave dynamics parameters of the air cushion vehicles “Hovertrek 6100L” are surveyed.

1963 ◽  
Vol 67 (636) ◽  
pp. 755-756 ◽  
Author(s):  
A. E. Bingham

The phrase “Air-Cushioned Vehicle” describes the complete range of vehicles which obtain some or all of their support from a free pressurised cushion of air contained between the vehicle and the ground.Vickers’ interest in air cushion vehicles stems directly from the basic work carried out on the Hovercraft—one type of air cushion vehicle—by Mr. C. S. Cockerell and the initiative and encouragement displayed by the N.R.D.C. through its subsidiary Hovercraft Development Ltd.


2012 ◽  
Vol 152-154 ◽  
pp. 560-567 ◽  
Author(s):  
Ahmed S. Sowayan ◽  
Khalid A. Alsaif

A model for compressible Air Cushion Vehicles (ACV) is presented. In this model the compressible Bernoulli's equation and the Newton's second law of motion are used to predict the dynamic behavior of the heave response of the ACV in both time and frequency domains. The mass flow rate inside the air cushion of this model is assumed to be constant. The self excited response and the cushion pressure of the ACV is calculated to understand the behavior of the system in order to assist in the design stage of such systems. It is shown in this study that the mass flow rate and the length of the vehicle's skirt are the most significant parameters which control the steady state behavior of the self excited oscillations of the ACV. An equation to predict the transient time of the oscillatory response or the settling time in terms of the system parameters of the ACV is developed. Based on the developed equations, the optimum parameters of the ACV that lead to minimum settling time are obtained.


2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

In this study, three degrees of freedom nonlinear air cushion vehicle (ACV) model is introduced to examine the dynamic behavior of the heave and pitch responses in addition to the cushion pressure of the ACV in both time and frequency domains. The model is based on the compressible flow Bernoulli's equation and the thermodynamics nonlinear isentropic relations along with the Newton’s second law of translation and rotation. In this study, the dynamical investigation was based on numerical simulation using the stiff ODE solvers of the Matlab software. The chaotic investigations of the proposed model is provided using the Fast Fourier Transform (FFT), the Poincaré maps, and the regression analysis. Three control design parameters are investigated for the chaotic studies. These parameters are: ACV mass (M), the mass flowrate entering the cushion volume (m ̇_in), and the ACV base radius (r). Chaos behavior was observed for heave, and pitch responses as well as the cushion pressure.


2021 ◽  
Vol 26 (2) ◽  
pp. 219-234
Author(s):  
A.S. Sowayan

Abstract In this study, a three degrees of freedom nonlinear air cushion vehicle (ACV) model is introduced to examine the dynamic behavior of the heave and pitch responses in addition to the cushion pressure of the ACV in both time and frequency domains. The model is based on the compressible flow Bernoulli’s equation and the thermodynamics nonlinear isentropic relations along with the Newton second law of translation and rotation. In this study, the dynamical investigation was based on a numerical simulation using the stiff ODE solvers of the Matlab software. The chaotic investigations of the proposed model are provided using the Fast Fourier Transform (FFT), the Poincaré maps, and the regression analysis. Three control design parameters are investigated for the chaotic studies. These parameters are: ACV mass (M), the mass flow rate entering the cushion volume (ṁin ), and the ACV base radius (r). Chaos behavior was observed for heave, and pitch responses as well as the cushion pressure.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-27
Author(s):  
Ahmed Sowayan

In this study, three degrees of freedom nonlinear air cushion vehicle (ACV) model is introduced to examine the dynamic behavior of the heave and pitch responses in addition to the cushion pressure of the ACV in both time and frequency domains. The model is based on the compressible flow Bernoulli's equation and the thermodynamics nonlinear isentropic relations along with the Newton’s second law of translation and rotation. In this study, the dynamical investigation was based on numerical simulation using the stiff ODE solvers of the Matlab software. The chaotic investigations of the proposed model is provided using the Fast Fourier Transform (FFT), the Poincaré maps, and the regression analysis. Three control design parameters are investigated for the chaotic studies. These parameters are: ACV mass (M), the mass flowrate entering the cushion volume (m ̇_in), and the ACV base radius (r). Chaos behavior was observed for heave, and pitch responses as well as the cushion pressure.


Author(s):  
M. L. Woodward

The paper outlines the experiences which have resulted from the application of two gas turbine engines (Proteus and Gnome) to provide main propulsion in marine craft. The emphasis is on the use of these engines in the Air Cushion Vehicle (Hovercraft). Summarizing the lessons learned with the Marine Proteus powering fast displacement craft, and the development of the engine for this role, the author then relates this work to the advent of Hovercraft. The fore-running small hovercraft had been largely dependent on the Marine Gnome engine, and much of the experience with both units can be cross-related. Marine Proteus entered the hovercraft world in the larger vehicles. This experience is discussed in some detail, and is further correlated to the continuing build-up of usage of the same engine in Fast Patrol Boats and Hydrofoil Craft.


Author(s):  
Lin Zhao ◽  
Weihao Meng ◽  
Zhongqiang Zheng ◽  
Zongyu Chang

AbstractTethered submerged buoy is used extensively in the field of marine engineering. In this paper considering the effect of wave, the nonlinear dynamics behavior of tethered submerged buoy is debated under wave loadings. According to Newton’s second law, the dynamic of the system is built. The coupling factor of the system is neglected, the natural frequency is calculated. The dynamic responses of the system are analyzed using Runge–Kutta method. Considering the variety of the steepness kA, the phenomenon of dynamic behavior can be periodic, double periodic and quasi-periodic and so on. The bifurcation diagram and the largest Lyapunov exponent are applied to judge the nonlinear characteristic. It is helpful to understand the dynamic behavior of tethered submerged buoy and design the mooring line of tethered submerge buoy.


Sign in / Sign up

Export Citation Format

Share Document