scholarly journals Chaotic Assessment of the Heave and Pitch Dynamics Motions of Air Cushion Vehicles

2021 ◽  
Vol 26 (2) ◽  
pp. 219-234
Author(s):  
A.S. Sowayan

Abstract In this study, a three degrees of freedom nonlinear air cushion vehicle (ACV) model is introduced to examine the dynamic behavior of the heave and pitch responses in addition to the cushion pressure of the ACV in both time and frequency domains. The model is based on the compressible flow Bernoulli’s equation and the thermodynamics nonlinear isentropic relations along with the Newton second law of translation and rotation. In this study, the dynamical investigation was based on a numerical simulation using the stiff ODE solvers of the Matlab software. The chaotic investigations of the proposed model are provided using the Fast Fourier Transform (FFT), the Poincaré maps, and the regression analysis. Three control design parameters are investigated for the chaotic studies. These parameters are: ACV mass (M), the mass flow rate entering the cushion volume (ṁin ), and the ACV base radius (r). Chaos behavior was observed for heave, and pitch responses as well as the cushion pressure.

2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

In this study, three degrees of freedom nonlinear air cushion vehicle (ACV) model is introduced to examine the dynamic behavior of the heave and pitch responses in addition to the cushion pressure of the ACV in both time and frequency domains. The model is based on the compressible flow Bernoulli's equation and the thermodynamics nonlinear isentropic relations along with the Newton’s second law of translation and rotation. In this study, the dynamical investigation was based on numerical simulation using the stiff ODE solvers of the Matlab software. The chaotic investigations of the proposed model is provided using the Fast Fourier Transform (FFT), the Poincaré maps, and the regression analysis. Three control design parameters are investigated for the chaotic studies. These parameters are: ACV mass (M), the mass flowrate entering the cushion volume (m ̇_in), and the ACV base radius (r). Chaos behavior was observed for heave, and pitch responses as well as the cushion pressure.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-27
Author(s):  
Ahmed Sowayan

In this study, three degrees of freedom nonlinear air cushion vehicle (ACV) model is introduced to examine the dynamic behavior of the heave and pitch responses in addition to the cushion pressure of the ACV in both time and frequency domains. The model is based on the compressible flow Bernoulli's equation and the thermodynamics nonlinear isentropic relations along with the Newton’s second law of translation and rotation. In this study, the dynamical investigation was based on numerical simulation using the stiff ODE solvers of the Matlab software. The chaotic investigations of the proposed model is provided using the Fast Fourier Transform (FFT), the Poincaré maps, and the regression analysis. Three control design parameters are investigated for the chaotic studies. These parameters are: ACV mass (M), the mass flowrate entering the cushion volume (m ̇_in), and the ACV base radius (r). Chaos behavior was observed for heave, and pitch responses as well as the cushion pressure.


Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


2012 ◽  
Vol 152-154 ◽  
pp. 560-567 ◽  
Author(s):  
Ahmed S. Sowayan ◽  
Khalid A. Alsaif

A model for compressible Air Cushion Vehicles (ACV) is presented. In this model the compressible Bernoulli's equation and the Newton's second law of motion are used to predict the dynamic behavior of the heave response of the ACV in both time and frequency domains. The mass flow rate inside the air cushion of this model is assumed to be constant. The self excited response and the cushion pressure of the ACV is calculated to understand the behavior of the system in order to assist in the design stage of such systems. It is shown in this study that the mass flow rate and the length of the vehicle's skirt are the most significant parameters which control the steady state behavior of the self excited oscillations of the ACV. An equation to predict the transient time of the oscillatory response or the settling time in terms of the system parameters of the ACV is developed. Based on the developed equations, the optimum parameters of the ACV that lead to minimum settling time are obtained.


2000 ◽  
Author(s):  
Kok-Meng Lee ◽  
Raye Sosseh

Abstract This paper considers the control of a variable reluctance (VR) spherical motor that offers some unique features by combining the roll, pitch and yaw motion in a single joint. The 3-DOF VR motor has multiple independent inputs, and the output torque is direction varying and orientation-dependent and as a result, the control for such a motor is significantly more challenging than the single-axis motor. We formulate a new three-degrees-of-freedom (3-DOF) VR motor control design tool using backstepping, where the inputs are optimized to achieve minimum total energy consumed. The torque has been derived as a linear combination of the square of the input currents, a form computationally friendlier than its quadratic counterpart for real-time implementation. The overall stability of the system is shown using Lyapunov techniques. Simulation results are illustrated to show the performance of the controller.


Author(s):  
Se´bastien Briot ◽  
Anatol Pashkevich ◽  
Damien Chablat

In this paper, a new methodology for the optimal design of the secondary geometric parameters (shape of links, size of the platform, etc.) of parallel kinematic machine tools is proposed. This approach aims at minimizing the total mass of the robot under position accuracy constraints. This methodology is applied to two translational parallel robots with three degrees-of-freedom (DOF): the Y-STAR and the UraneSX. The proposed approach is able to speed up the design process and to help the designer to find more quickly a set of design parameters.


2017 ◽  
Vol 20 (K5) ◽  
pp. 23-29
Author(s):  
Duong Van Le ◽  
Dat Duy Nguyen ◽  
Toan Van Mai

Air Cushion Vehicle (ACV) is a moving vehicle on airbags, which can travel on land and on water to transport people, goods and equipment. An important requirement for ACVs is to: increase reliability and longevity, reduce operating costs, stability and mobility. In this paper, a model for the dynamic behavior of air cushion vehicles segment skirt is presented. In this model, the compressible Bernoulli's equation, Newton's second law of motion are used to predict the dynamic behavior of the air cushion vehicles. Based on the developed model, the heave dynamics parameters of the air cushion vehicles “Hovertrek 6100L” are surveyed.


Author(s):  
Jiao Jia ◽  
Yingmin Jia ◽  
Shihao Sun

In this paper, a new active gimbal simulator is developed for testing the attitude determination and control system of satellites. The active gimbal simulator is composed of a rolling joint, a pitching joint, a main support frame, an active yawing joint, and a fixture. The rolling joint enables the active gimbal simulator to be applied to the columnar satellite without the fixture. The contact forces between the rolling joint and the test satellite (or the fixture) can be regulated by the support of the pitching joint. The object attached to the active gimbal simulator is at neutral equilibrium and can maintain balance at an arbitrary attitude. Hence, the object can rotate freely without being affected by its gravity. The active gimbal simulator is an approximately free-to-free suspension or support method. Compared with the traditional gimbals, the active gimbal simulator can be applied to objects of arbitrary shape especially cylinders and the effect of exogenous mass and inertia introduced by the connection mechanism is reduced. The design parameters of the active gimbal simulator are optimized based on the force analysis. A specific prototype was made, and its feasibility was verified by laboratory-based experiments.


Sign in / Sign up

Export Citation Format

Share Document