scholarly journals Sea level rise scenarios for Ho Chi Minh City in the context of the climate change

2019 ◽  
Vol 2 (5) ◽  
pp. 184-191
Author(s):  
Tuan Ngoc Le ◽  
Thinh Nam Ngo ◽  
Phung Ky Nguyen

This work aimed to develope sea level rise (SLR) scenarios in Ho Chi Minh City (HCMC) to 2100, corresponding to the scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5 and the approach mentioned in the AR5 report of the Intergovernmental Panel on Climate Change (IPCC) through SIMCLIM software, and the local water level data (updated to 2015). The results showed that the SLR in the coastal area of HCMC increased gradually over the years as well as the increase in greenhouse gas scenarios. In the period of 2025-2030, SLR would increase relatively equally among RCP scenarios. SLR in 2030 would increase about 12cm as compared to sea level in the period of 1986-2005 in all RCP scenarios. By 2050, the average SLR for the scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5 would be 21 cm, 21 cm, 22 cm, and 25 cm, respectively. The corresponding figures for 2100 would bee 43 cm, 52 cm, 54 cm, and 72 cm, respectively. The research results provide an important basis for calculations and assessments of impact and vulnerability due to the climate change to socio-economic development in HCMC.

2019 ◽  
Vol 2 (3) ◽  
pp. 102-112
Author(s):  
Tuan Ngoc Le ◽  
Kim Thi Tran ◽  
Phung Ky Nguyen

This work aimed to assess the risk of the saltwater intrusion (SI) in main rivers in Ho Chi Minh City (HCMC) in the context of climate change by 2100 under scenarios of RCP4.5 and RCP8.5. By modeling and GIS methods, results showed that SI has been increasing and moving upstream. Differences in the salinity between the RCP4.5 and RCP8.5 scenarios could be only visible from the middle to the end of the 21st century. In Saigon river, for RCP4.5, corresponding to 2025, 2030, 2050, and 2100, the salt line of 0.25‰ would be 0.25km, 1.6 km, 4.09km and 6.22km, respectively from Hoa Phu pump station as compared to that of 0.75 km; 1.6km; 4.6 km and 8.6 km, respectively for RCP8.5. In Dong Nai river, from Hoa An pump station, the corresponding figures would be 3.7km; 4.9km; 7.7km; 11.7km according to RCP4.5 and 3.7km, 4.9 km, 8.1km, 12.6km according to RCP8.5. The research results provide an important basis for planning suitable adaptation solutions, ensuring local activities and production.


2017 ◽  
Author(s):  
Aiqing Feng ◽  
Jiangbo Gao ◽  
Shaohong Wu ◽  
Yanzhong Li ◽  
Xiliu Yue

Abstract. Extreme water levels, caused by the joint occurrence of storm surges and high tides, always lead to super floods along coastlines. Given the ongoing climate change, this study explored the risk of future sea-level rise on the extreme inundation by combining P-III model and losses assessment model. Taking Rongcheng as a case study, the integrated risk of extreme water levels was assessed for 2050 and 2100 under three Representative Concentration Pathways (RCP) scenarios of 2.6, 4.5, and 8.5. Results indicated that the increase in total direct losses would reach an average of 60 % in 2100 as a 0.82 m sea-level rise under RCP 8.5. In addition, affected population would be increased by 4.95 % to 13.87 % and GDP (Gross Domestic Product) would be increased by 3.66 % to 10.95 % in 2050 while the augment of affected population and GDP in 2100 would be as twice as in 2050. Residential land and farmland would be under greater flooding risk in terms of the higher exposure and losses than other land-use types. Moreover, this study indicated that sea-level rise shortened the recurrence period of extreme water levels significantly and extreme events would become common. Consequently, the increase in frequency and possible losses of extreme flood events suggested that sea-level rise was very likely to exacerbate the extreme risk of coastal zone in future.


2020 ◽  
Vol 2 (6) ◽  
pp. 182-191
Author(s):  
Le Ngoc Tuan ◽  
Tran Thi Kim ◽  
Nguyen Ky Phung

This work aimed to assess the risk of inundation by tide in Ho Chi Minh City (HCMC) in the context of climate change by 2100 under scenarios of RCP4.5 and RCP8.5. By modeling and GIS methods, results showed the southern area suffered the most, especially in CanGio, NhaBe and BinhChanh districts. By 2050, the inundated area in these localities would be approximately 3518ha, 677ha, 1576ha under RCP4.5 and 3561ha, 709ha, 1618ha under RCP8.5. The corresponding figures at the end of this century would be 12246ha, 2085ha, 3724ha under RCP4.5, and 14713ha, 2320ha, 4355ha under RCP8.5. This work also simulated the case of considering some flood control projects, thereby, tidal flooding in HCMC would be reduced, especially in BinhChanh, NhaBe, and District 7. In 2025 and 2100 (RCP8.5), as compared with those in the former case (without works), flooded area in NhaBe would decrease 16ha and 3.21ha, respectively. The corresponding figures for Binh Chanh would be 8.71ha and 1.62ha; and for District 7 would be 6.22ha and 2.35ha. The research results provide an important basis for planning suitable adaptation solutions, contributing to sustainable development goals of the local.


2013 ◽  
Vol 27 (1) ◽  
pp. 81
Author(s):  
Ifan Ridlo Suhelm

Tidal inundation, flood and land subsidence are the problems faced by Semarang city related to climate change. Intergovernmental Panel on Climate Change (IPCC) predicted the increase of sea level rise 18-59 cm during 1990-2100 while the temperature increase 0,6°C to 4°C during the same period. The Semarang coastal city was highly vulnerable to sea level rise and it increased with two factors, topography and land subsidence. The purpose of this study was to map the adaptive capacity of coastal areas in the face of the threat of disasters caused by climate change. The parameters used are Network Number, Employee based educational background, Source Main Livelihoods, Health Facilities, and Infrastructure Road. Adaptive capacity of regions classified into 3 (three) classes, namely low, medium and high. The results of the study showed that most of the coastal area of Semarang have adaptive capacities ranging from low to moderate, while the village with low capacity totaling 58 villages (58.62%) of the total coastal district in the city of Semarang.


2016 ◽  
Vol 19 (2) ◽  
pp. 82-88
Author(s):  
Long Thanh Do ◽  
Binh Thai Tran ◽  
Trung Dinh Tran

Climate change and sea level rise scenarios for Vietnam was published by the Ministry of Natural Resources and Environment in 2012. According to the scenarios, when sea level rise by 1m, over 20% of Ho Chi Minh City will become flood risk area affecting more than half million people (7% of the city’s population). This urgent problem affecting so many people like that but accessing to this information of the inhabitants is very limited. Therefore, the research Using the 3D technology to build flood model on WebGIS helps to show visually water level, flood position and the risk area affected in different water level. The research did not analyze the aspects of climate change, just used the results of the scenarios combining with 3D model technology on WebGIS to build an application. The result is not only the tool to help local people to access easily with the visual information about water level but also the reference for relating research and applications.


2016 ◽  
Vol 113 (10) ◽  
pp. 2597-2602 ◽  
Author(s):  
Matthias Mengel ◽  
Anders Levermann ◽  
Katja Frieler ◽  
Alexander Robinson ◽  
Ben Marzeion ◽  
...  

Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.


2019 ◽  
Vol 2 (4) ◽  
pp. 161-166
Author(s):  
Tuan Ngoc Le ◽  
Phi Thi Yen Le ◽  
Bang Van Nguyen

Flooding is a concern phenomenon, especially in the context of climate change (CC) and sea level rise. This work aimed to establish indicators used to assess vulnerability (V) due to inundation on the basis of considering the exposure (E), sensitivity (S) and adaptive capacity (AC) of a system. By literature review, data analysis, and expert methods, 33 indicators for assessing vulnerability due to inundation were established, including 4 E, 11 S (divided into 4 groups: society, economic, environment, and land use), and 18 AC indicators (divided into 4 groups: human, financial, infrastructure, and society). This work resulted in an important basis for comprehensive evaluation of vulnerability due to inundation in the context of CC and proposing suitable solutions.


2012 ◽  
Vol 1 (33) ◽  
pp. 26
Author(s):  
James Houston

Design-flood elevations with associated exceedance probabilities are often determined for coastal projects. Rising sea level introduces another design consideration that needs to be combined with the design-flood level. However, most sea level projections do not have exceedance probabilities that can be used in conjunction with the design flood to obtain total flood elevations with exceedance probabilities. This paper shows how to combine design-flood elevations with sea level rise projections that have exceedance probabilities, such as those of the Intergovernmental Panel for Climate Change (Bindoff et al 2007) or Houston (2012a), to obtain total elevations at desired exceedance probabilities over particular intervals.


2018 ◽  
Vol 52 (2) ◽  
pp. 13-17
Author(s):  
Mark Bushnell

AbstractWithin the U.S. Integrated Ocean Observing System Program, the Quality Assurance/Quality Control of Real-Time Oceanographic Data (QARTOD) Project develops manuals that describe variable-specific quality control (QC) tests for operational use. The QARTOD's Manual for Real-Time Quality Control of Water Level Data: A Guide to Quality Control and Quality Assurance for Water Level Observations was created with broad support from entities engaged in operational observations of water levels. The process used to generate this manual and all other QARTOD manuals exemplifies the integration of “federal, state, and local government agencies as well as the private and nonprofit sectors” described by the Hampton Roads Sea Level Rise Preparedness and Resilience Intergovernmental Pilot Project.Another project that supports Hampton Roads, Virginia, sea level rise and utilizes multiple partners is the deployment of continuous global positioning system (cGPS) receivers directly on water level sensors. These cGPS installations enable the determination of absolute sea level rise and local land subsidence. Successful transition of cGPS to an operational status requires the application of real-time data QC.


2019 ◽  
Vol 34 (3) ◽  
pp. 391-414 ◽  
Author(s):  
Clive Schofield ◽  
David Freestone

Abstract This article considers the potential impacts of sea level rise on maritime zones with particular reference to impacts on islands. It considers the sea level rise predictions of the Intergovernmental Panel on Climate Change; it outlines the existing legal framework for coastal baselines and insular features established by the 1982 Law of the Sea Convention. It highlights the work of the International Law Association Committee on International Law and Sea Level Rise, which in its 2018 report had identified the development of a body of State practice among the States and Territories of the South Pacific regarding the maintenance of existing maritime zone claims in the face of sea level rise. That practice is considered, together with the implications of the 2016 Tribunal Award on the South China Sea case on maritime zone claims based on islands.


Sign in / Sign up

Export Citation Format

Share Document