CREATION AND VISUALIZATION OF AN OPERATIONAL PARAMETERS ARCHIVE

Author(s):  
A.M. Zagrebayev ◽  
◽  
S.V. Ten

The developed methodologies allows visualizing the behavior of limiting param- eters over time and identifying patterns in the dynamics of changes in the parameters of a nuclear power unit, as well as determining if any of the parameters intersects the safe opera- tion settings. The relevance of the work is due to the importance of high-quality processing and visualization of data from the nuclear reactor archive using modern effective methodolo- gies. Also, the development of new approaches to the analysis of archived data can improve the efficiency of power plant operators.

2021 ◽  
Vol 2 (396) ◽  
pp. 149-158
Author(s):  
I. Chesnokova ◽  
◽  
S. Verbitsky ◽  
E. Stambrovskaya ◽  
◽  
...  

Object and purpose of research. The article discusses in comparison the methods of desalination of seawater and their energy features from the point of view of the feasibility of including a desalination plant in the complex with a floating nuclear power unit. Materials and methods. Based on the analysis of various literary sources, a review of the main methods of nuclear desalination is made. The IAEA DEEP program was used to compare different desalination technologies. Main results. Based on the results of simulating nuclear desalination in the IAEA DEEP program, using the example of the Persian Gulf, preliminary recommendations were drawn up on the use of desalination methods in the joint operation of a desalination plant with a floating nuclear power unit. Conclusion. The integrated complex allows for desalination by both membrane and thermal methods. For the optimal choice of technology, it is necessary to specify the area of deployment and the relative position of the floating nuclear power unit and the desalination plant, and further search for a compromise based on more accurate calculations.


2014 ◽  
Vol 986-987 ◽  
pp. 698-701
Author(s):  
Wen Feng Fu ◽  
Fe Li ◽  
Lan Xin Zhou

Based on theoretical deduction, according to the characteristics of nuclear power unit, a universal heat economic framework for PWR nuclear power plant heat regenerative system was established. And on this basis, the cycle thermal efficiency was chosen as the optimization goal, the extraction steam pressures were chosen as optimization variables, a universal nuclear power unit regenerative system optimization model was established. A 900 MW nuclear power unit was taken for example, it’s the first time that AWPSO was applied to optimize the regenerative heat system of nuclear power unit. The result shows that the convergence ability and search performance of PSO are superior to other methods and the original design scheme. A new and convenient design is provided for PWR nuclear power plant heat regenerative system in this paper.


2021 ◽  
Vol 714 (4) ◽  
pp. 042033
Author(s):  
Yongqiang Che ◽  
Yisen Chen ◽  
Fengcai Zheng ◽  
Junshan Guo ◽  
Panfeng Shang

Author(s):  
Xiaomeng Dong ◽  
Zhijian Zhang ◽  
Zhaofei Tian ◽  
Lei Li ◽  
Guangliang Chen

Multi-physics coupling analysis is one of the most important fields among the analysis of nuclear power plant. The basis of multi-physics coupling is the coupling between neutronics and thermal-hydraulic because it plays a decisive role in the computation of reactor power, outlet temperature of the reactor core and pressure of vessel, which determines the economy and security of the nuclear power plant. This paper develops a coupling method which uses OPENFOAM and the REMARK code. OPENFOAM is a 3-dimension CFD open-source code for thermal-hydraulic, and the REMARK code (produced by GSE Systems) is a real-time simulation multi-group core model for neutronics while it solves diffusion equations. Additionally, a coupled computation using these two codes is new and has not been done. The method is tested and verified using data of the QINSHAN Phase II typical nuclear reactor which will have 16 × 121 elements. The coupled code has been modified to adapt unlimited CPUs after parallelization. With the further development and additional testing, this coupling method has the potential to extend to a more large-scale and accurate computation.


2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1187-1197 ◽  
Author(s):  
Marek Jaszczur ◽  
Michal Dudek ◽  
Zygmunt Kolenda

One of the most advanced and most effective technology for electricity generation nowadays based on a gas turbine combined cycle. This technology uses natural gas, synthesis gas from the coal gasification or crude oil processing products as the energy carriers but at the same time, gas turbine combined cycle emits SO2, NOx, and CO2 to the environment. In this paper, a thermodynamic analysis of environmentally friendly, high temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allows us to produce electricity with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency higher than 50% what is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by traditional (coal or lignite) power plant.


Author(s):  
R. Z. Aminov ◽  
A. N. Bairamov

THE PURPOSE. System efficiency and competitiveness assess of a new scheme for combining a nuclear power plant with a hydrogen complex based on additional heating of feed water and superheating of live steam in front of the high-pressure cylinder of a steam turbine. METHODS. Basic laws of thermodynamics were applied when developing and substantiating a new scheme for combining a nuclear power plants (NPP) with a hydrogen facility; theoretical regularities were applied of heat engineering; basic regularity were applied of fatigue wear of power equipment and assessment of its working resourse; basic regularities were applied for the assessment of operating costs and net present value (NPV). RESULTS. A new scheme is presented of the combination of a nuclear power plant with a hydrogen facility and a description of its operating principle on the example of a two-circuit nuclear power plant with a VVER-1000 reactor and a C-1000-60 / 1500 turbine. The data are presented on an increase in the productivity of steam generators at nuclear power plants with additional heating of feed water in the range of 235-250 ° C from its nominal value of 230 ° C. The temperature was estimated of live steam superheat depending on the temperature of the additional heating of the feed water. The results are presented of the calculation of the generated peak power by the power unit and the efficiency of conversion of the night off-peak power of the NPP into peak power, as well as the efficiency of the power unit of the NPP depending on the temperature of additional heating of the feed water. Main regularities are given for taking into account the fatigue wear of the main equipment of the hydrogen facility, including the rotor of the NPP turbine in the conditions of the stress-cyclic operation. The results are presented of assessing the cost of peak electricity NPP in combination with a hydrogen facility in comparison with a pumped storage power plant (PSPP) both for the current period and for the future until 2035. CONCLUSION. Hydrogen facility efficiency and competitiveness depends significantly on the intensity of the use of the main equipment in the conditions of the intense-cyclic operation. The hydrogen facility will competitiveness noticeably increase in comparison with the PSPP in the future. Efficiency of the NPP power unit and NPV is highest when the feed water is heated to 235 ° C and superheating of live steam in front of the high-pressure cylinder of the C-1000-60/1500 turbine up to 470°C.The hydrogen facility competes with the PSPP with her specific capital investment at the level of 660 USD / kW, provided that the boosting capabilities of the turbine are used with live steam overheating at 300 ° C and additional heating of feed water to 235°C on the current period. The PSPP does not compete with the hydrogen facility both for the current period and in the future with her specific capital investment of $ 1,500 / kW and above.


Author(s):  
Jianghong Xie

The paper mainly elaborates the negative pressure control technology and commissioning approaches for double-wall containment of Russian WWER-1000 nuclear power units. It also carries out an analysis and research on the layered negative pressure technology in the containment. It mainly includes the following three parts: A Russian WWER-1000 nuclear power unit adopts the structure of double-wall containment for its Reactor building, with independent negative pressure systems for the containment and the annular space between the two walls. The paper mainly elaborates the control methods and limits requirements for the negative pressure in the containment and the annular space under the normal operation condition and in case of design basis accidents, with analysis and argumentation on the design function and operation requirements of the negative pressure system for the containment and the annular space. In the paper, the design philosophy of layered negative pressure and its feasibility study are analyzed from the aspects of radiated partition, air distribution of the negative pressure system and containment separator for layered negative pressure. The commissioning methods and technical requirements of negative pressure system in the Reactor building are described in the paper. Problems encountered during commissioning are also addressed and analyzed. Operations practices prove that the negative pressure control technology for double-wall containment of WWER-1000 nuclear power unit is advanced and reliable, which meets the requirements on nuclear air decontamination emission and radiation protection, and is worthy of study, research and reference.


Sign in / Sign up

Export Citation Format

Share Document