scholarly journals Research of heating the lining of high-temperature units in order to increase their residual resource

Author(s):  
A.S. Nikiforov ◽  
◽  
A.E. Karmanov ◽  
E.V. Prikhod’ko ◽  
A.K. Kinzhibekova ◽  
...  

The article contains an analysis of the initial stage of the heating process of high-temperature units. The heating modes used at the enterprises lead to various difficulties: a delay in the heating process or heating at a high speed at which mechanical stresses arise and exceed the permissible values. The proposed graphical dependencies for heating allow us to heat up at the highest possible speeds, taking into account the time spent on drying. In this case, the ultimate strength of refractory materials is not exceeded, which leads to a significant reduction in the time for the heating process.

2014 ◽  
Vol 71 (3-4) ◽  
pp. 137-139 ◽  
Author(s):  
A. S. Nikiforov ◽  
E. V. Prikhod’ko ◽  
A. K. Kinzhibekova ◽  
A. E. Karmanov

2013 ◽  
Vol 774-776 ◽  
pp. 1181-1185 ◽  
Author(s):  
Shu Hui Deng ◽  
Yong Deng

U71Mn is the main steel grade for high-speed railway rails. In the production of U71Mn rail, its decarburization depth is the deepest, and the qualified percentage is lower than 60% for the requirement of less than 0.3mm of decarburization depth. On the basis of current heating furnace, the influence of different heating processes on the decarburization depth of U71Mn rail was studied, and the result shows that just optimization of heat process can not decrease greatly the decarburization depth. Therefore the high temperature anti-oxidation coating protection technology was carried out in the process of heating of U71Mn rail. Under the condition of protection heating and optimization of heating process, the decarburization depth of U71Mn rail decreases significantly, and the qualified rate reaches to more than 95% for the depth of less than 0.30mm, and 100% for the depth of less than 0.50mm.


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract ALX is a composition of nonferrous materials with a cobalt base containing chromium, tungsten and carbon. This alloy is commonly supplied in the cast-to-shape form, having an as-cast hardness of Rockwell C60-62 and requiring no further heat treatment. ALX is also supplied as cast tool bit material and is useful where conventional high-speed steels or carbides do not function effectively. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Co-35. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (7) ◽  

Abstract CYCLOPS M4 is a deep-hardening steel that was developed to utilize the excellent abrasion resistance that results from higher-than-normal carbon and vanadium contents in the molybdenum-tungsten family of high-speed steels. It is recommended for heavy-duty cutting operations and for sharp edges for fine cuts. Cyclops M4 should always be used at or near maximum hardness. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-335. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
2001 ◽  
Vol 50 (10) ◽  

Abstract CPM Rex 121 is a super high-speed steel with significantly higher wear resistance and red hardness than other high-speed steels. It is best suited for applications requiring high cutting speeds. It may provide an alternative to carbide where carbide cutting edges are too fragile. The annealed hardness is approximately 350-400 HB, and maximum hardness is approximately 72 HRC. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity as well as fracture toughness. It also includes information on high temperature performance and wear resistance as well as heat treating and surface treatment. Filing Code: TS-591. Producer or source: Crucible.


Alloy Digest ◽  
2019 ◽  
Vol 68 (11) ◽  

Abstract YSS YXM4 is a cobalt-alloyed molybdenum high-speed tool steel with resistance to abrasion, seizure, and deformation under high pressure. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance. Filing Code: TS-780. Producer or source: Hitachi Metals America, Ltd.


Alloy Digest ◽  
2019 ◽  
Vol 68 (10) ◽  

Abstract YSS HAP72 is a powder metallurgy high-speed tool steel with a very high wear resistance. This datasheet provides information on composition, hardness, and bend strength. It also includes information on high temperature performance. Filing Code: TS-779. Producer or source: Hitachi Metals America Ltd.


2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


Author(s):  
Zai-Wei Li ◽  
Xiao-Zhou Liu ◽  
Hong-Yao Lu ◽  
Yue-Lei He

The deformation of longitudinally coupled prefabricated slab track (LCPST) due to high temperature may lead to a reduction in ride comfort and safety in high-speed rail (HSR) operation. It is thus critical to understand and track the development of such defects. This study develops an online monitoring system to analyze LCPST deformation at different slab depths under various temperatures. The trackside system, powered by solar energy with STM8L core that is ultra-low in energy consumption, is used to collect data of LCPST deformation and temperature level uninterruptedly. With canonical correlation analysis, it is found that LCPST deformation presents similar periodic variation to yearly temperature fluctuation and large longitudinal force may be generated as heat accumulates in summer, thereby causing track defects. Then the distribution of temperature and deformation data is categorized based on fuzzy c-means clustering. Through the distribution analysis, it is suggested that slab inspection can be shortened to 6 hours, i.e. from 10:00 am to 4:00 pm, reducing 14.3% track inspection workload from the current practice. The price of workload reduction is only a 2% chance of missed detection of slab deformation. The finding of this research can be used to enhance LCPST monitoring efficiency and reduce interruption to HSR operation, which is an essential step in promoting reliable and cost-effective track service.


Sign in / Sign up

Export Citation Format

Share Document