scholarly journals Response of Streamflow and Soil Erosion to Climate Change and Human Activities in Nam Rom River Basin, Northwest of Vietnam

2020 ◽  
Vol 18 (4) ◽  
pp. 411-423
Author(s):  
Hoang Le Huong ◽  
◽  
Ngo Thanh Son ◽  
◽  
◽  
...  
Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1085 ◽  
Author(s):  
Shanshan Guo ◽  
Zhengru Zhu ◽  
Leting Lyu

Climate change and human activities are the major factors affecting runoff and sediment load. We analyzed the inter-annual variation trend of the average rainfall, air temperature, runoff and sediment load in the Xihe River Basin from 1969–2015. Pettitt’s test and the Soil and Water Assessment Tool (SWAT) model were used to detect sudden change in hydro-meteorological variables and simulate the basin hydrological cycle, respectively. According to the simulation results, we explored spatial distribution of soil erosion in the watershed by utilizing ArcGIS10.0, analyzed the average erosion modulus by different type of land use, and quantified the contributions of climate change and human activities to runoff and sediment load in changes. The results showed that: (1) From 1969–2015, both rainfall and air temperature increased, and air temperature increased significantly (p < 0.01) at 0.326 °C/10 a (annual). Runoff and sediment load decreased, and sediment load decreased significantly (p < 0.01) at 1.63 × 105 t/10 a. In 1988, air temperature experienced a sudden increase and sediment load decreased. (2) For runoff, R2 and Nash and Sutcliffe efficiency coefficient (Ens) were 0.92 and 0.91 during the calibration period and 0.90 and 0.87 during the validation period, for sediment load, R2 and Ens were 0.60 and 0.55 during the calibration period and 0.70 and 0.69 during the validation period, meeting the model’s applicability requirements. (3) Soil erosion was worse in the upper basin than other regions, and highest in cultivated land. Climate change exacerbates runoff and sediment load with overall contribution to the total change of −26.54% and −8.8%, respectively. Human activities decreased runoff and sediment load with overall contribution to the total change of 126.54% and 108.8% respectively. Runoff and sediment load change in the Xihe River Basin are largely caused by human activities.


2021 ◽  
Author(s):  
Boyan Li ◽  
Yunchen Wang ◽  
Chao Wang ◽  
Wei Wang ◽  
Aiwen Lin ◽  
...  

Abstract Sediment transport from rivers to ocean is increasingly influenced by climate change and intensive human activities1, constituting a research priority of global relevance2. However, little attention has been paid to quantify and predict the contribution of driving factors to the sediment load. By integrating local-scale hydrologic modeling with soil erosion estimation model, and the soil erosion and sediment yield balance equation, we quantify watershed-scale changes in sediment load under forecasted climate change and human activities in the Yangtze River Basin (YRB), China. We also develop a new metric, the sediment load sensitivity index, that identifies sensitive to anthropogenic variability over the past 30 years. It was found that the reservoirs deposition was the primary factor (81.37 %) among human activities contributing to the decline in sediment load, followed by the soil and water conservation measures (SWCM) (18.63 %). The sediment load shows a slight increasing trend for the 1.5 °C and 2.0 °C global warming at 2020–2039 and 2040–2059, respectively. Climate change dominates the sediment load trend in the future due to the effectiveness of dams and reservoirs decreases and the saturation of the capacity of the SWCM to capture sediment. Although these findings indicate the importance of the impact of climate change on changes in sediment load, it is necessary to apply them to appropriate management to adapt to climate changes in future river basin management policies.


2021 ◽  
Author(s):  
Li Wang ◽  
Fan Zhang ◽  
Guanxing Wang

&lt;p&gt;The impact of climate change on soil erosion is pronounced in high mountain area. In this study, the revised universal soil loss equation (RUSLE) model was improved for better calculation of soil erosion during snowmelt period by integrating a distributed hydrological model in upper Heihe river basin (UHRB). The results showed that the annual average soil erosion rate from 1982 to 2015 in the study area was 8.1 t ha&lt;sup&gt;-1 &lt;/sup&gt;yr&lt;sup&gt;-1&lt;/sup&gt;, belonging to the light grade. To evaluate the influence of climate change on soil erosion, detrended analysis of precipitation, temperature and NDVI was conducted. It was found that in detrended analysis of precipitation and temperature, the soil erosion of UHRB would decrease 26.5% and 3.0%, respectively. While in detrended analysis of NDVI, soil erosion would increase 9.9%. Compared with precipitation, the effect of temperature on total soil erosion was not significant, but the detrended analysis of temperature showed that the effect of temperature on soil erosion during snowmelt period can reach 70%. These finding were helpful for better understanding of the impact of climate change on soil erosion and provide a scientific basis for soil management in high mountain area under climate change in the future.&lt;/p&gt;


2016 ◽  
Vol 7 (5) ◽  
pp. 2373-2383 ◽  
Author(s):  
Deepak Khare ◽  
Arun Mondal ◽  
Sananda Kundu ◽  
Prabhash Kumar Mishra

2020 ◽  
Vol 12 (16) ◽  
pp. 6644
Author(s):  
Xue Wu ◽  
Xiaomin Sun ◽  
Zhaofeng Wang ◽  
Yili Zhang ◽  
Qionghuan Liu ◽  
...  

Vegetation forms a main component of the terrestrial biosphere owing to its crucial role in land cover and climate change, which has been of wide concern for experts and scholars. In this study, we used MODIS (moderate-resolution imaging spectroradiometer) NDVI (Normalized Difference Vegetation Index) data, land cover data, meteorological data, and DEM (Digital Elevation Model) data to do vegetation change and its relationship with climate change. First, we investigated the spatio-temporal patterns and variations of vegetation activity in the Koshi River Basin (KRB) in the central Himalayas from 2000 to 2018. Then, we combined NDVI change with climate factors using the linear method to examine their relationship, after that we used the literature review method to explore the influence of human activities to vegetation change. At the regional scale, the NDVIGS (Growth season NDVI) significantly increased in the KRB in 2000–2018, with significant greening over croplands in KRB in India. Further, the croplands and forest in the KRB in Nepal were mainly influenced by human interference. For example, improvements in agricultural fertilization and irrigation facilities as well as the success of the community forestry program in the KRB in Nepal increased the NDVIGS of the local forest. Climate also had a certain impact on the increase in NDVIGS. A significant negative correlation was observed between NDVIGS trend and the annual minimum temperature trend (TMN) in the KRB in India, but an insignificant positive correlation was noted between it and the total annual precipitation trend (PRE). NDVIGS significantly decreased over a small area, mainly around Kathmandu, due to urbanization. Increases in NDVIGS in the KRB have thus been mainly affected by human activities, and climate change has helped increase it to a certain extent.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1958 ◽  
Author(s):  
Zhang ◽  
Wang ◽  
Zhou

This study conducted quantitative diagnosis on the impact of climate change and human activities on drought risk. Taking the Kuye river basin (KRB) in China as the research area, we used variation point diagnosis, simulation of precipitation and runoff, drought risk assessment, and attribution quantification. The results show that: (1) the annual runoff sequence of KRB changed significantly after 1979, which was consistent with the introduction of large-scale coal mining; (2) under the same drought recurrence period, the drought duration and severity in the human activity stage were significantly worse than in the natural and simulation stages, indicating that human activities changed the drought risk in this area; and (3) human activities had little impact on drought severity in the short duration and low recurrence period, but had a greater impact in the long duration and high recurrence period. These results provide scientific guidance for the management, prevention, and resistance of drought; and guarantee sustainable economic and social development in the KRB.


Sign in / Sign up

Export Citation Format

Share Document